Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning

RL4VLM@NeurIPS2024 / https://rl4vlm.github.io/

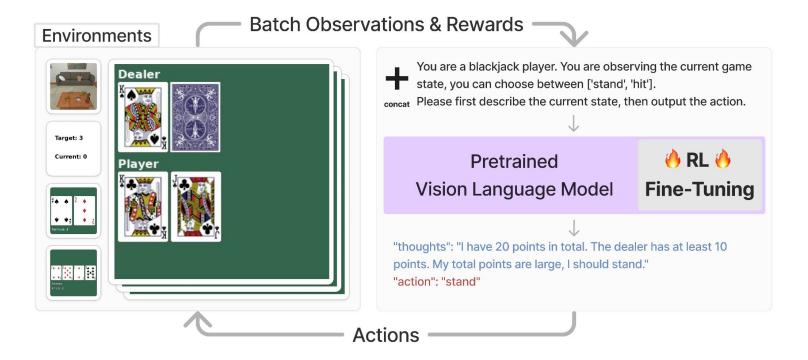
Yuexiang Zhai, Hao Bai*, Zipeng Lin*, Jiayi Pan*, Shengbang Tong*, Yifei Zhou* Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, Sergey Levine

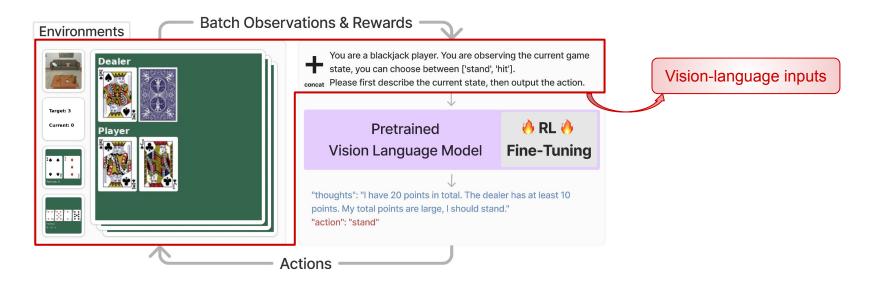
BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

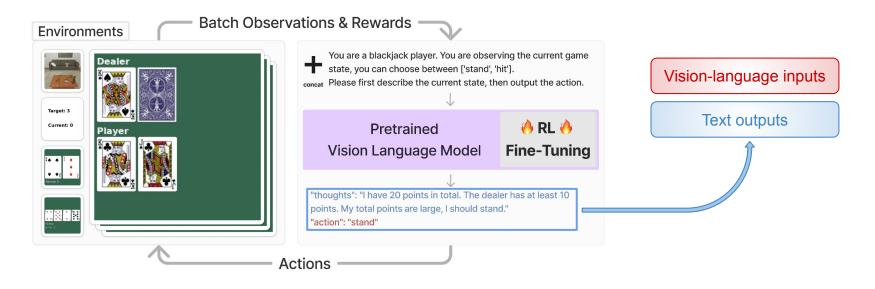
- Overview
- Vision-language evaluation tasks
- Leveraging domain knowledge
- Results

Overview

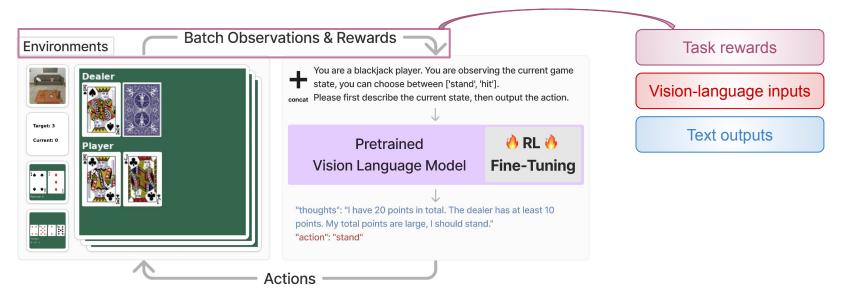
- Vision-language evaluation tasks
- Leveraging domain knowledge
- Results



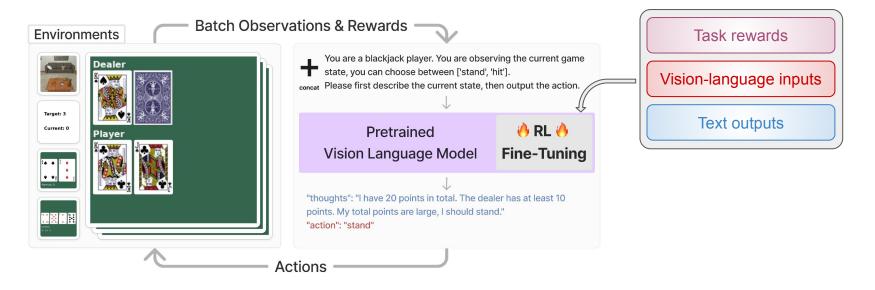


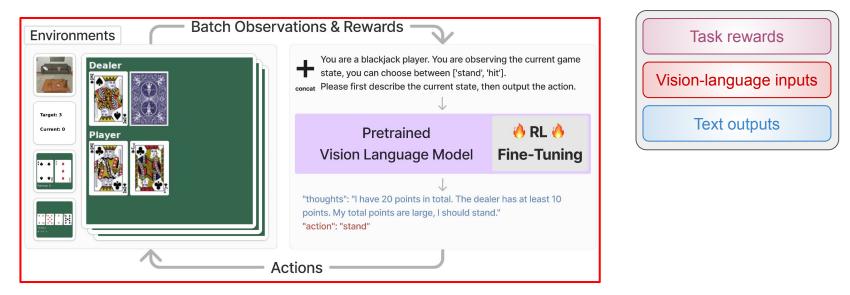


Zhai, Y., Bai, H., Lin, Z., Pan, J., Tong, S., Zhou, Y., Suhr, A., Xie, S., LeCun, Y., Ma, Y., Levine, S.. Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning. ArXiv 2024.



Zhai, Y., Bai, H., Lin, Z., Pan, J., Tong, S., Zhou, Y., Suhr, A., Xie, S., LeCun, Y., Ma, Y., Levine, S.. Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning. ArXiv 2024.



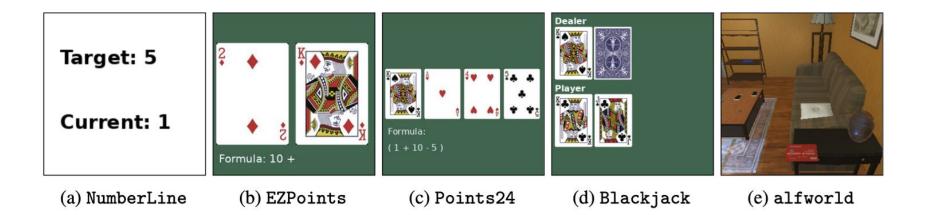


End-to-end VLM training with RL

- Overview
- Vision-language evaluation tasks
- Leveraging domain knowledge
- Results

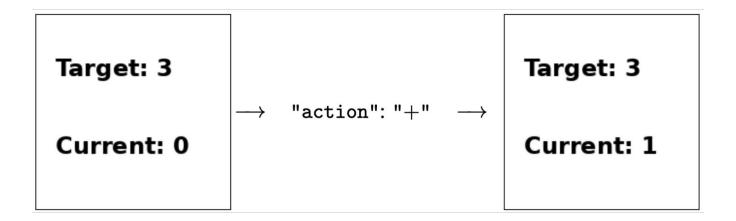
RL4VLM: vision-language based evaluation tasks

- Tasks requiring **fine-grained** visual recognition (a) (d)
- Tasks requiring visual semantic reasoning (e)



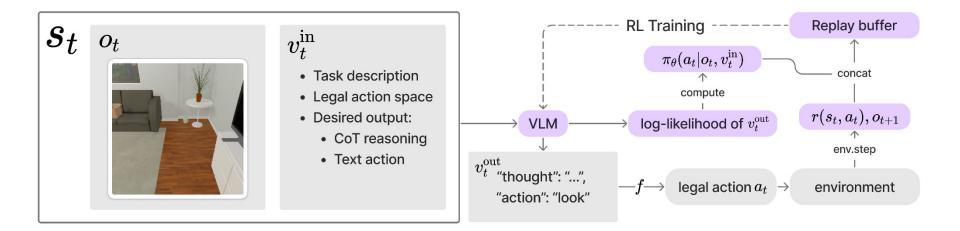
RL4VLM: vision-language based evaluation tasks

• Examples of transitions with **text actions**

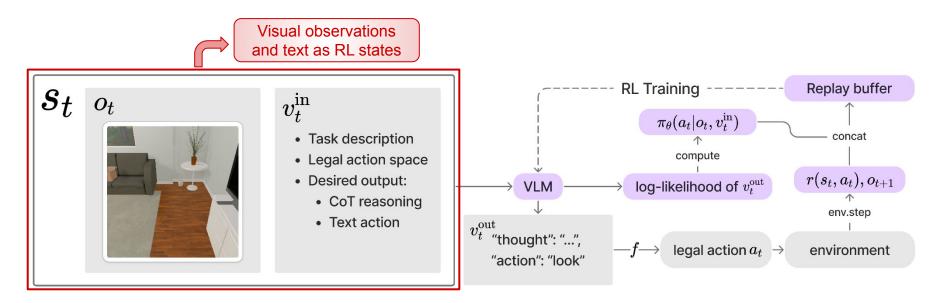


- Overview
- Vision-language evaluation tasks
- Leveraging domain knowledge
- Results

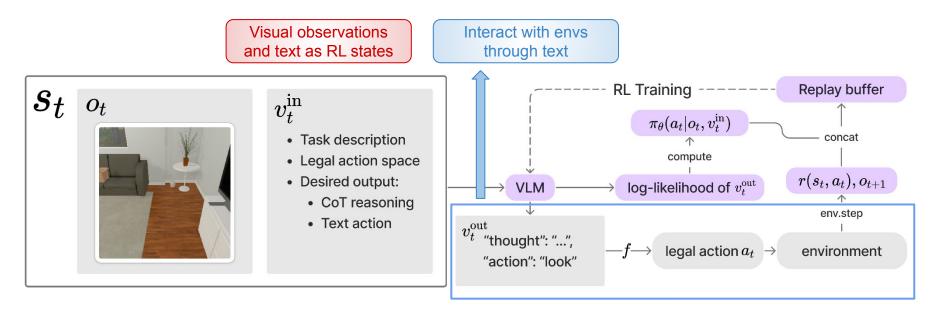
- Each state contains a visual and textual input
- Parse text outputs into executable actions



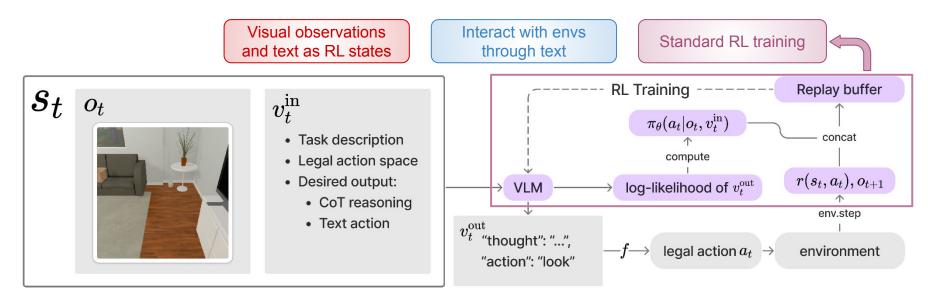
- Each state contains a visual and textual input
- Parse text outputs into executable actions



- Each state contains a visual and textual input
- Parse text outputs into executable actions

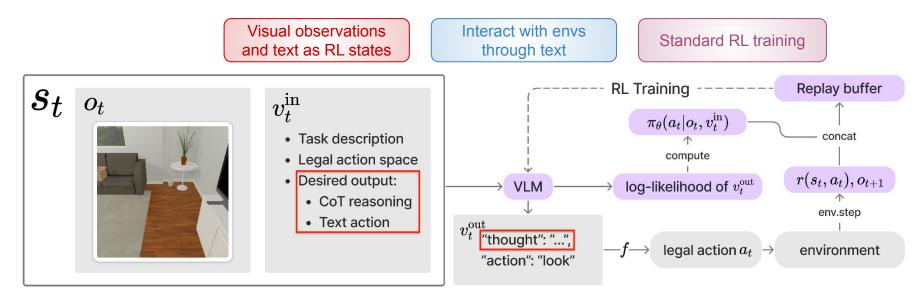


- Each state contains a visual and textual input
- Parse text outputs into executable actions



RL4VLM: leveraging the domain information via CoT reasoning

- Each state contains a **visual** and **textual** input
- Parse **text outputs** into executable actions
- → In context learning for domain knowledge
- → CoT reasoning in output text



RL4VLM: an example of in context prompt and CoT output

```
CoT prompt v_t^{\text{in}} for task \mathcal{M}
You are trying to solve a task \mathcal{M}. You are observing the current status of the task. The action space of \mathcal{M} is {text version of all legal actions a \in \mathcal{A}}. {Description of the task}. Your response should be a valid json file in the following format:
```

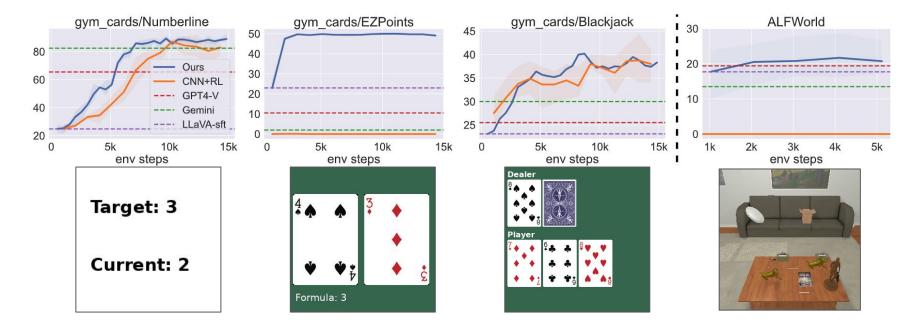
```
"thoughts": "{first describe the current status of the task, then think carefully about which action to choose}", "action": {Choose an action "a \in A"}
```

```
Formatted text output \boldsymbol{v}_t^{\mathrm{out}}
```

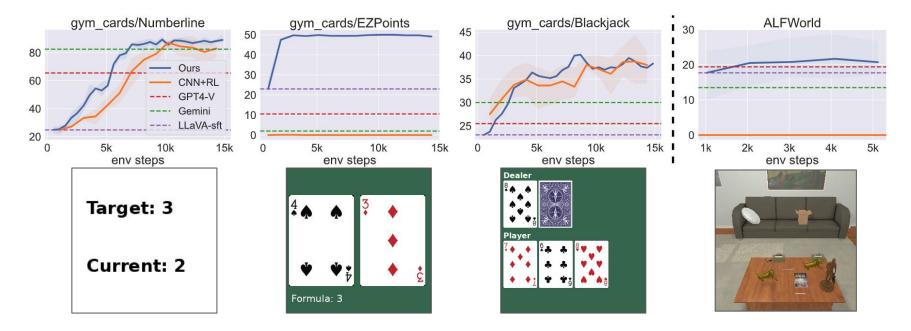
"thoughts": "I am solving task \mathcal{T} , given the current status of the task, I should choose a_t ", "action": " a_t "

- Overview
- Vision-language evaluation tasks
- Leveraging domain knowledge
- Results

RL4VLM: improving decision making capabilities of generative agents



RL4VLM: improving decision making capabilities of generative agents

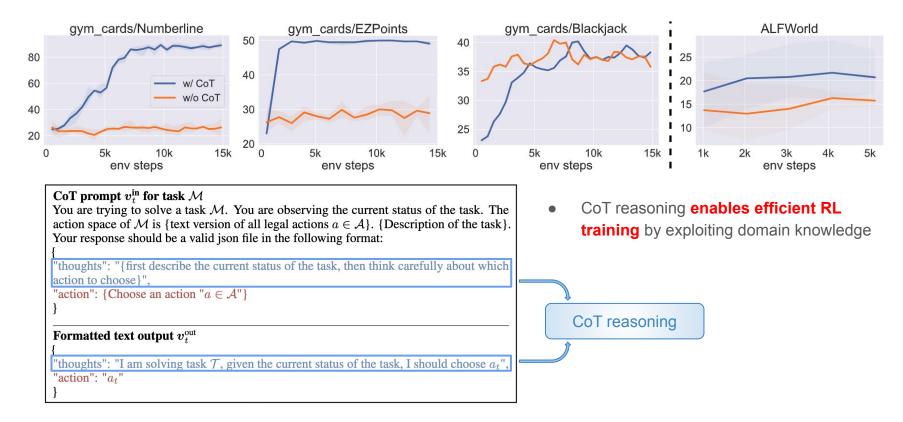


- Our method enables 7b models to **surpass** the performance of
 - Commercial models: GPT4-V, Gemini
 - Supervised learning based method (llava-7b-1.6)

RL4VLM: the importance of CoT reasoning



RL4VLM: the importance of CoT reasoning



Outline

- Background and Motivation
- Training Large Generative Models as Decision-Making Agents
- Conclusions and Directions for Future Research

Conclusions and Limitations

- **First** end-to-end RL training framework for vision-language generative agent
 - Performance improvement
 - Leverage domain knowledge for efficient training via CoT
 - Without human feedback

Conclusions and Limitations

- First end-to-end RL training framework for vision-language generative agent
 - Performance improvement
 - Leverage domain knowledge for efficient training via CoT
 - Without human feedback
- Fail to improve performance when
 - Backbone model is not strong enough
 - Task is too hard

