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Overview

2024/11/8 NICS-efc Lab Page 2

Multi-NeRF
Training Framework

Ray-wise
Gating Module

Depth-based
Mutual Learning

Better Rendering 
Performance

Better Scalability

Breaking the limitation of NeRF Scalability in Complex Scenes
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Rendering

➢ Render：
Transform a scene representation (camera, light, surface geometry, etc.) into static images

       “Taking pictures with a computer-simulated camera, provided that a 3D representation of the 
         scene already exists”

The physical process of taking pictures
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Novel View Synthesis

➢ Rendering Task: Novel View Synthesis
      Given the source image and source pose, as well as the unseen target pose, render and generate 
      the image corresponding to the target pose.

Scene 
Representation

Novel View 
Rendering
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Neural Radiance Field

➢ Neural Network is adopted to fit scene representation

MLP Network

• A ray is made up of infinite number of 3D points in target scene
• The NN encodes the 3-d coordination and 2-d direction, outputs the color/density of each point

The color is relative to 

both xyz coordinate and 

view direction
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Neural Radiance Field

➢ Neural Network is adopted to fit scene representation
• A ray is made up of infinite number of 3D points in target scene
• The NN encodes the 3-d coordination and 2-d direction, outputs the color/density of each point
• Integrate the information of each point on the ray to obtain Pixel (Ray) color (Volume Rendering)

Convert the integral process to 
discrete summation

Transmittance

Sampling Interval
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Challenges exist on NeRF Training

Outdoor free scene Large indoor scene

NeRF still exhibits rendering defects on complex scenes
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Challenges exist on NeRF Training

Impact of MLP size on rendering accuracy

➢ Challenge-1: Limitation of NeRF Model Capacity
Directly increasing the network’s size (width/depth) yields marginal performance improvement
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Challenges exist on NeRF Training

Impact of MLP size on rendering accuracy

➢ Challenge-1: Limitation of NeRF Model Capacity
Directly increasing the network’s size (width/depth) yields marginal performance improvement

How to effectively scale up the capacity of NeRF ? 
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Challenges exist on NeRF Training

➢ Challenge-2: Low Accuracy of Geometric Modeling 
The quality of geometric modeling exhibits a significant influence on  NeRF’s generalization 

Shape-Radiance Ambiguity
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NeRF’s Training interference

The NeRF trained with more invisible rays 
(two sides of train) performs worse.

Ray-3 does not contain valid information 
about distant object.



2024/11/8 NICS-efc Lab Page 12

NeRF’s Training interference

The NeRF trained with more invisible rays 
(two sides of train) performs worse.

Ray-3 does not contain valid information 
about distant object.

Decouple the NeRF’s Training in the Ray-dimension!
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Gate-guided Multi-NeRF Fusion

➢ Multi-NeRF Structure based on Hybrid Representation
• The feature grid is shared for all sub-NeRFs and the MLP decoders are independent
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Gate-guided Multi-NeRF Fusion

➢ Ray-wise Soft Gating Module Design
• A soft gating module is adopted to assign gating scores to the sub-NeRFs for each ray.

Represent the preference of 
each sub-NeRF for different rays
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Depth-based Mutual Learning

➢ Mutual Learning: 
• each sub-NeRF not only learns from ground truth but also learns from each other.

serves as geometric regularization

helps the model find more 
robust geometric solutions
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Total Training Loss Function

Color rendering loss CV balancing loss

Encourages a balanced allocation of 
model parameters for training rays.

Depth regularization

prevents the gate module from 
collapsing onto a specific sub-NeRF
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Evaluation: Setup

➢ Experiment Setup
• Datasets: five datasets from different types of scenes
       (1) Object dataset: Masked Tanks-And-Temples (MaskTAT)
       (2) 360-degree inward/outward-facing dataset: 
    Tanks-And-Temples (TAT) & NeRF-360-v2 dataset
       (3) Free-shooting-trajectory dataset:
             Free-dataset & ScanNet dataset
• Baselines: different NeRF training frameworks
      (1) Grid-based single-NeRF: PlenOctrees, DVGO, Instant-NGP & F2-NeRF
       (2) MLP-based single-NeRF: NeRF, NeRF++, MipNeRF & MipNeRF360
       (3) Multi-NeRF frameworks: NGP-version of Block-NeRF, Switch-NeRF & Rad-NeRF
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Higher Rendering Performance

➢ Rad-NeRF achieves higher rendering quality than other single/multi-NeRF methods
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Higher Rendering Performance

➢ Rad-NeRF achieves better recovery of scene details
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Better Model Scalability

➢ Rad-NeRF achieves better performance-parameter scalability 
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Reasonable Gating Scores

➢ Rad-NeRF learns reasonable ray allocations, matching training interference “intuition”
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Ablation Study of DML

➢ DML enables a smooth and reasonable depth prediction



Thanks for your attention!
Q&A
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