

清著大学电子工程系 Department of Electronic Engineering, Tsinghua University

Rad-NeRF: Ray-decoupled Training of Neural Radiance Field

Lidong Guo^{1*}, Xuefei Ning^{1*}, Yonggan Fu², Tianchen Zhao³, Zhuoliang Kang³, Jincheng Yu¹, Yingyan (Celine) Lin², Yu Wang¹

¹Tsinghua University, ²Georgia Institute of Technology, ³Meituan E-mail: gld21@mails.tsinghua.edu.cn, foxdoraame@gmail.com, yu-wang@tsinghua.edu.cn

Breaking the limitation of NeRF Scalability in Complex Scenes

> Render:

Transform a scene representation (camera, light, surface geometry, etc.) into static images "Taking pictures with a computer-simulated camera, provided that a 3D representation of the scene already exists"

The physical process of taking pictures

> Rendering Task: Novel View Synthesis

Given the <u>source image</u> and <u>source pose</u>, as well as the <u>unseen target pose</u>, render and generate the image corresponding to the target pose.

Neural Network is adopted to fit scene representation

- A ray is made up of infinite number of 3D points in target scene
- The NN <u>encodes</u> the 3-d coordination and 2-d direction, <u>outputs</u> the color/density of each point

> Neural Network is adopted to fit scene representation

- A ray is made up of infinite number of 3D points in target scene
- The NN <u>encodes</u> the 3-d coordination and 2-d direction, <u>outputs</u> the color/density of each point
- Integrate the information of each point on the ray to obtain Pixel (Ray) color (Volume Rendering)

Challenges exist on NeRF Training

NeRF still exhibits rendering defects on complex scenes

Outdoor free scene

Large indoor scene

Challenge-1: Limitation of NeRF Model Capacity

Directly increasing the network's size (width/depth) yields marginal performance improvement

Neural Radiance Field: LEGO

NEURAL INFORMATION PROCESSING SYSTEMS

Challenge-1: Limitation of NeRF Model Capacity

Directly increasing the network's size (width/depth) yields marginal performance improvement

Neural Radiance Field: LEGO

EURAL INFORMATION

Challenge-2: Low Accuracy of Geometric Modeling

The quality of geometric modeling exhibits a significant influence on NeRF's generalization

Shape-Radiance Ambiguity

NeRF's Training interference

Ray-3 does not contain valid information about distant object.

The NeRF trained with more invisible rays (two sides of train) performs worse.

2024/11/8

NeRF's Training interference

Ray-3 does not contain valid information about distant object.

The NeRF trained with more invisible rays (two sides of train) performs worse.

Decouple the NeRF's Training in the Ray-dimension!

Multi-NeRF Structure based on Hybrid Representation

• The feature grid is shared for all sub-NeRFs and the MLP decoders are independent

Ray-wise Soft Gating Module Design

• A soft gating module is adopted to <u>assign gating scores</u> to the sub-NeRFs for each ray.

Mutual Learning:

• each sub-NeRF not only learns from ground truth but also learns from each other.

Color rendering loss Depth regularization CV balancing loss $L = L_c + \lambda_1 L_{dml} + \lambda_2 L_{cv}$

$$L_{cv} = \frac{\operatorname{Var}(\overline{G}(\mathcal{R}))}{\left(\sum_{k=1}^{n} \overline{G_k}(\mathcal{R})/n\right)^2}$$

 $\overline{G_k}(\mathcal{R}) = \sum G_k(\mathbf{r}),$

 $\mathbf{r} \in \mathcal{R}$

Encourages a balanced allocation of model parameters for training rays.

prevents the gate module from collapsing onto a specific sub-NeRF

Experiment Setup

• Datasets: five datasets from different types of scenes

- (1) Object dataset: Masked Tanks-And-Temples (MaskTAT)
- (2) 360-degree inward/outward-facing dataset:
 - Tanks-And-Temples (TAT) & NeRF-360-v2 dataset
- (3) Free-shooting-trajectory dataset: Free-dataset & ScanNet dataset

Baselines: different NeRF training frameworks

- (1) Grid-based single-NeRF: PlenOctrees, DVGO, Instant-NGP & F2-NeRF
- (2) MLP-based single-NeRF: NeRF, NeRF++, MipNeRF & MipNeRF360
- (3) Multi-NeRF frameworks: NGP-version of Block-NeRF, Switch-NeRF & Rad-NeRF

Rad-NeRF achieves higher rendering quality than other single/multi-NeRF methods

	TAT		NeRF-360-v2			Free-Dataset			
Methods	PSNR↑	SSIM ↑	LPIPS↓	PSNR ↑	SSIM ↑	LPIPS↓	PSNR↑	SSIM ↑	LPIPS↓
NeRF++	20.419	0.663	0.451	27.211	0.728	0.344	24.592	0.648	0.467
MIPNeRF360	22.061	0.731	0.357	28.727	0.799	0.255	27.008	0.766	0.295
MipNeRF360 _{short} *	20.078	0.617	0.508	25.484	0.631	0.452	24.711	0.648	0.466
DVGO	19.750	0.634	0.498	25.543	0.679	0.380	23.485	0.633	0.479
Instant-NGP	20.722	0.657	0.417	27.309	0.756	0.316	25.951	0.711	0.312
F2-NeRF	-	_	_	26.393	0.746	0.361	26.320	0.779	0.276
Switch-NGP ^{\dagger}	20.512	0.654	0.432	26.524	0.740	0.331	25.755	0.694	0.341
Block-NGP [†]	20.783	0.659	0.415	27.436	0.761	0.298	26.015	0.702	0.325
Rad-NeRF	21.708	0.672	0.398	27.871	0.769	0.298	26.449	0.719	0.285

TT 1 1 1	O	1. •	1	
Table 1	()))antitative	regulte in	complex	scenes
	Quantitative	results in	complex	scenes.

MipNeRF360 requires nearly one day for training. For a fair comparison, we also report its results with one-hour of training.

[†] We adapt Switch-NeRF and Block-NeRF to the Instant-NGP fast training framework.

Rad-NeRF achieves better recovery of scene details

Instant-NGP

Rad-NeRF

NEURAL INFORMATION PROCESSING SYSTEMS

Better Model Scalability

Rad-NeRF achieves better performance-parameter scalability

Rad-NeRF learns reasonable ray allocations, matching training interference "intuition"

w/ L_{dml}

> DML enables a smooth and reasonable depth prediction

Ground Truth

w/o L_{dml}

清著大学电子工程系 Department of Electronic Engineering, Tsinghua University

Thanks for your attention! Q&A

Lidong Guo^{1*}, Xuefei Ning^{1*}, Yonggan Fu², Tianchen Zhao³, Zhuoliang Kang³, Jincheng Yu¹, Yingyan (Celine) Lin², Yu Wang¹

¹Tsinghua University, ²Georgia Institute of Technology, ³Meituan E-mail: <u>gld21@mails.tsinghua.edu.cn</u>, <u>foxdoraame@gmail.com</u>, <u>yu-wang@tsinghua.edu.cn</u>

