

Self-Distilled Depth Refinement with Noisy Poisson Fusion

Jiaqi Li^{1,*}, Yiran Wang^{1,*}, Jinghong Zheng¹, Zihao Huang¹, Ke Xian², Zhiguo Cao^{1,†}, Jianming Zhang³

¹ School of AIA, Huazhong University of Science and Technology ² School of EIC, Huazhong University of Science and Technology ³ Adobe Research <u>https://github.com/lijia7/SDDR</u>

*Equal contribution; ⁺Corresponding author.

2024/1	0/16
--------	------

Depth refinement aims to infer high-resolution depth with fine-grained edges and details, refining low-resolution results of depth estimation models.

(a) Visualization of Depth Refinement Approaches

Accuracy (δ_1)

(b) Performance and Efficiency

- The prevailing methods adopt tile-based manners by merging numerous patches, which lacks efficiency and produces inconsistency.
- Besides, prior arts suffer from fuzzy depth boundaries and limited generalizability.
- Most of prior arts are trained only on synthetic datasets.

Li Jiaqi | HUST

Analyzing the fundamental reasons for these limitations, we model depth refinement as a noisy Poisson fusion problem with local inconsistency and edge deformation noises.

- Predictions of N_d are noisy and low-noise gradient domain optimization objectives ∇D^* are not available in realistic datasets. This is the key to previous methods limited by synthetic data.
- Qualitatively and quantitatively, it is demonstrated that the combination of two types of noise can characterize the overall degradation. A coarse-to-fine framework suppresses both types of noise in the predicted results.

Overview of Self-Distilled Depth Refinement

1) Refinement network N_r produces initial refined depth D_0 , edge representation G_0 , and learnable regional soft mask Ω . 2) The final depth edge representation G_S is updated **from coarse to fine as pseudo-labels**.

3) Edge-guided gradient loss and edge-based fusion loss supervises N_r to achieve consistent structures and fine-grained edges.

Overview of Self-Distilled Depth Refinement

1) **Robustness:** Self-distilling framework generates plausible gradient pseudo-labeling in natural scenarios and can be trained across datasets to improve robustness

2) *Efficiency:* There is a coarse-to-fine generation process that can be used both for training to generate pseudo-labels and for two-stage reasoning, significantly improving efficiency.

3) **Accuracy:** Accurate pseudo-labeling makes the model after convergence from self-distillation training already have good accuracy for one-stage inference and even better accuracy for two-stage inference.

2024/10/16

Quantitative Comparison

Dradiator Mathad		Mi	ddlebury2	2021	 1	Multiscop	ic	 Hypersim			
Predictor	Method	$\delta_1\uparrow$	REL↓	ORD↓	$\delta_1\uparrow$	REL↓	ORD↓	$\delta_1\uparrow$	REL↓	ORD↓	
	MiDaS [29]	0.868	0.117	0.384	 0.839	0.130	0.292	 0.781	0.169	0.344	
	Kim et al. [14]	0.864	0.120	0.377	0.839	0.130	0.293	0.778	0.175	0.344	
MiDaS	Graph-GDSR [4]	0.865	0.121	0.380	0.839	0.130	0.292	0.781	0.169	0.345	
	GBDF [3]	0.871	0.115	0.305	0.841	0.129	0.289	0.787	0.168	0.338	
	Ours	0.879	0.112	0.299	0.852	0.122	0.267	0.791	0.166	0.318	
	LeReS [49]	0.847	0.123	0.326	0.863	0.111	0.272	 0.853	0.123	0.279	
	Kim et al. [14]	0.846	0.124	0.328	0.860	0.113	0.286	0.850	0.125	0.286	
LeReS	Graph-GDSR [4]	0.847	0.124	0.327	0.862	0.111	0.273	0.852	0.123	0.281	
	GBDF [3]	0.852	0.122	0.316	0.865	0.110	0.270	0.857	0.121	0.273	
	Ours	0.862	0.120	0.305	0.870	0.108	0.259	0.862	0.120	0.273	
	ZoeDepth [1]	0.900	0.104	0.225	0.896	0.097	0.205	0.927	0.088	0.198	
ZoeDepth	Kim et al. [14]	0.896	0.107	0.228	0.890	0.099	0.204	0.923	0.091	0.204	
	Graph-GDSR [4]	0.901	0.103	0.226	0.895	0.096	0.208	0.926	0.089	0.199	
	GBDF [3]	0.899	0.105	0.226	0.897	0.096	0.207	0.925	0.089	0.199	
	Ours	0.905	0.100	0.218	0.904	0.092	0.199	0.930	0.086	0.191	

Dradiator	Mathad	Mi	iddlebury2	.021		Multiscopic				Hypersim			
Fredicion	Method	$\delta_1 \uparrow$	REL↓	ORD↓	-	$\delta_1\uparrow$	$REL\downarrow$	ORD↓		$\delta_1 \uparrow$	REL↓	ORD↓	
	MiDaS [29]	0.868	0.117	0.384		0.839	0.130	0.292		0.781	0.169	0.344	
MiDaS	Boost [24]	0.870	0.118	0.351		0.845	0.126	0.282		0.794	0.161	0.332	
	Ours	0.871	0.115	0.303		0.858	0.120	0.263		0.799	0.154	0.322	
	LeReS [49]	0.847	0.123	0.326		0.863	0.111	0.272		0.853	0.123	0.279	
LeReS	Boost [24]	0.844	0.131	0.325		0.860	0.112	0.278		0.865	0.118	0.272	
	Ours	0.861	0.123	0.309		0.870	0.109	0.268		0.858	0.123	0.271	
	ZoeDepth [1]	0.900	0.104	0.225		0.896	0.097	0.205		0.927	0.088	0.198	
ZaaDanth	Boost [24]	0.911	0.099	0.210		0.910	0.094	0.197		0.926	0.089	0.193	
ZoeDepth	PatchFusion [20]	0.887	0.102	0.211		0.908	0.095	0.212		0.881	0.116	0.258	
	Ours	0.913	0.096	0.202		0.908	0.091	0.197		0.933	0.083	0.189	

Table 2: **Comparisons with two-stage methods.** PatchFusion [20] only adopts ZoeDepth [1] as the fixed baseline, while other approaches are pluggable for different depth predictors [29, 49, 1].

Table 1: **Comparisons with one-stage methods.** As prior arts [14, 4, 3], we conduct evaluations with different depth predictors [29, 49, 1]. For each predictor, we report the initial metrics and results of refinement methods. Best performances with each depth predictors [29, 49, 1] are in boldface.

Qualitative Comparison

Figure 5: Qualitative comparisons of one-stage methods on natural scenes. LeReS [49] is used as the depth predictor. SDDR predicts sharper depth edges and more meticulous details than prior arts [3, 14], *e.g.*, fine-grained predictions of intricate branches. Better viewed when zoomed in.

Figure 6: **Qualitative comparisons of two-stage methods on natural scenes.** ZoeDepth [1] is adopted as the depth predictor. The SDDR with coarse-to-fine edge refinement can predict more accurate depth edges and more consistent spatial structures than the tile-based methods [20, 24].

Ablation Studies

Mathod		DI	ML		DIODE								
Method	$\delta_1 \uparrow$	REL↓	ORD↓	$D^3R\downarrow$	δ	ı1	REL↓	ORD↓	$D^3R {\downarrow}$				
LeReS [49]	0.902	0.101	0.242	0.284	0.8	392	0.105	0.324	0.685				
Kim et al. [14]	0.902	0.100	0.243	0.301	0.8	389	0.105	0.325	0.713				
Graph-GDSR [4]	0.901	0.101	0.243	0.300	0.8	390	0.104	0.326	0.690				
GBDF [3]	0.906	0.100	0.239	0.267	0.8	394	0.105	0.322	0.673				
Boost [24]	0.897	0.108	0.274	0.438	0.8	392	0.105	0.343	0.640				
Ours	0.926	0.098	0.221	0.220	0.9	900	0.098	0.293	0.637				

Table 3: **Comparisons of model generalizability.** We conduct zero-shot evaluations on DIML [15] and DIODE [39] datasets with diverse in-the-wild scenarios to compare the generalization capability. We adopt LeReS [49] as the depth predictor for all the compared methods in this experiment.

Figure 7: **Robustness against noises.** X-axis shows noise level of $\epsilon_{cons} + \epsilon_{edges}$. With higher noises, our SDDR is more robust with less performance degradation than the prior GBDF [3].

												Method	Training Da	ta d	δı↑ I	REL↓	ORD↓	$D^3R\!\downarrow$
Method	$\delta_1\uparrow$	REL↓	ORD↓	$D^3R\downarrow$	\mathcal{L}_{gt}	\mathcal{L}_{grad}	\mathcal{L}_{fusion}	$\delta_1\uparrow$	REL↓	ORD↓	D ³ R↓	GBDF [3] Ours	HRWSI [4 HRWSI [4] 0.] 0.	852 (860 (0.122 0.121	0.316 0.309	0.258 0.222
S = 0 S = 1	$0.859 \\ 0.860$	$0.125 \\ 0.122$	$\begin{array}{c} 0.313 \\ 0.309 \end{array}$	$0.235 \\ 0.223$	1	1		$\begin{array}{c} 0.854 \\ 0.858 \end{array}$	$0.124 \\ 0.122$	$\begin{array}{c} 0.313 \\ 0.307 \end{array}$	$0.240 \\ 0.220$		(c) I	Effect	tivene	ess		
S = 2 S = 3	0.860 0.862	0.120 0.120	0.307 0.305	0.219 0.216	1	1	1	0.859 0.862	0.120 0.120	0.311 0.305	0.229 0.216	Method		j1↓	REL	↓ 0	RD↓	$D^3R\!\downarrow$
(a) Coars	a) Coarse-to-fine Edge Refinement (b) Edge-based Guidance							GBDF [3 GBDF (u	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	852 858	0.12 0.12	2 0 2 0	.316 .307	0.258 0.230				

(d) Transferability

Table 4: Ablation Study. All ablations are on Middlebury2021 [33] with depth predictor LeReS [49].

2024/	′ 10 /	/16
-------	---------------	-----

Thanks for watching!

Paper, code, and videos are available: https://github.com/lijia7/SDDR

Feel free to contact lijiaqi.work@outlook.com

