

FineCLIP: Self-distilled Region-based CLIP for Better Fine-grained Understanding

Dong Jing*, Xiaolong He*, Yutian Luo, Nanyi Fei, Guoxing Yang, Wei Wei, Huiwen Zhao, Zhiwu Lu[†]

- 1. Background
- 2. FineCLIP
- 3. In-domain Validation
- 4. Out-domain Evaluation with Scaled Trainset
- 5. Downstream Application
- 6. Conclusion

1. CLIP^[1] and its drawback

- CLIP aligns global image and text embeddings.
- Due to the weak supervision for visual dense features, CLIP performs poorly on dense prediction tasks
- 2. Two existing strategies for fine-grained alignment enhancement
 - Matching image regions with template labels using large quantities of grounding annotations. ^[2,3]
 - Weakness: the pre-defined template labels lack sufficient semantic diversity.
 - Global-to-region distillation with a frozen teacher.^[4] ٠
 - Weakness: the frozen teacher model restricts the performance ceiling of the student model.

Both disrupt visual-semantic consistency.

Reference:

- [1] Learning transferable visual models from natural language supervision.
- [2] RegionCLIP: Region-based language-image pretraining.
- [3] Grounded language-image pre-training.
- [4] CLIPSelf: Vision transformer distills itself for open-vocabulary dense prediction.

FineCLIP incorporates THREE training components:

- 1. Global Contrastive preserve global visual-semantic consistency & learn coarse knowledge from image-text pairs
- 2. *Regional Contrastive* construct region-text alignment & learn fine-grained knowledge from region-text pairs
- 3. Real-time Self-distillation interact the knowledge between region embeddings and pooled region features independently

In-domain Validation

1. Ablation Study

In-domain Setting:

- Train on COCO Train2017 split; Validate on COCO val2017 split^[1]
- Model size: ViT-B/16; Input resolution: 224x224
- Region proposals are provided by COCO dataset
- Region captions are generated by BLIP-2^[2]

2. Comparisons with Competing Methods

Ablation Results:

Table 1: Ablation study on the objective components.

#	L_{GC}	L_{SD}	L_{RC}	Box Classification Top1 Top5		Retrieval I2T T21		
1		/		0.0	0.0	0.0	0.1	
2	./	\mathbf{v}		42.3	66.6	62 4	48.8	
3	V	1		43.7	72.9	60.0	47.1	
4	v	v		45.5	72.0	39.5	30.4	
5				47.8	74.1	62.5	48.9	
6		\checkmark		48.4	75.6	62.2	47.6	

Table 4: Performance comparisons of FineCLIP and competing methods on COCO.

#	Methods	Box Classification Top1 Top5		Retrieval I2T T2I		Time Overhead (per epoch)	GPU Memory Usage (per card)	
1 2 3	Pre-trained CLIP [40] CLIP [40] RegionCLIP [70]	31.1 42.3 40.0	53.7 66.6 65.3	59.3 62.4 25.1	42.4 48.8 31.2	- 6 min 9 min 10 min	- 8G 5G	
4 5	FineCLIP(Ours)	43.7 48.4	72.3 75.6	33.3 62.2	21.2 47.6	10 min 11 min	6G 36G	

Reference:

[1] Microsoft coco: Common objects in context.

[2] Blip-2: Bootstrapping language- image pre-training with frozen image encoders and large language models.

Out-domain Evaluation on Scaled Trainset

1. Data Preparation based on CC3M^[1]

- Image Filtering: we retain 2.5 million high-resolution images, referred to "CC2.5M"
- **Region Proposal**: we utilize YOLOv9^[2] to detect objects, which yields 10.4 million high-quality regions
- **Region Annotation**: we employ BLIP-2^[3] to annotate region proposals.
- 2. Out-domain Comparisons (Train on CC2.5M, Test on COCO)

Figure 2: Zero-shot comparisons of models pre-trained on datasets in three different scales.

FineCLIP presents promising scalability

Reference:

[1] Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning.[2] Yolov9: Learning what you want to learn using an argument of the second sec

programmable gradient information.

[3] Blip-2: Bootstrapping language- image pre-training with frozen image encoders and large language models.

Out-domain Evaluation on Scaled Trainset

3. Visualization of attention maps of FineCLIP by $GAE^{[1]}$

Figure 3: Visualizations of attention maps of our FineCLIP using GAE [5] on images responding to complete sentences or individual words. (a)-(c) Image attention maps w.r.t. different sentences. (d)(e) Image attention maps w.r.t. different words.

Gaoling School of Artificial Intelligence

7

Downstream Application

(Please refer to the original paper for detailed Settings)

1. Application to Fine-grained Localization

• Open-vocabulary Object Detection

Method	Backbone	AP_{50}^{novel}	AP^{base}_{50}	AP_{50}
OV-RCNN [63]	RN50	17.5	41.0	34.9
RegionCLIP [70]	RN50	26.8	54.8	47.5
PB-OVD [11]	RN50	30.8	46.1	42.1
Detic [73]	RN50	27.8	51.1	45.0
VLDet [29]	RN50	32.0	50.6	45.8
F-VLM [23]	RN50	28.0	-	39.6
BARON-Cap [54]	RN50	33.1	54.8	49.1
CORA [56]	RN50	35.1	35.5	35.4
RO-ViT [20]	ViT-B/16	30.2	-	41.5
RO-ViT [20]	ViT-L/16	33.0	-	47.7
CFM-ViT [19]	ViT-L/16	34.1	-	46.0
F-ViT	ViT-B/16	17.5	41.0	34.9
F-ViT+CLIPSelf [†]	ViT-B/16	25.4	40.9	36.8
F-ViT+FineCLIP [†]	ViT-B/16	29.8 _{12.3}	45.9 <mark>↑4.9</mark>	41.7 <mark>↑6.8</mark>
F-ViT	ViT-L/14	24.7	53.6	46.0
F-ViT+CLIPSelf [†]	ViT-L/14	38.4	54.4	50.2
F-ViT+FineCLIP [†]	ViT-L/14	40.0 ^{15.3}	57.2 _{↑3.6}	52.7 _{↑6.7}

(a) OV-COCO benchmark

Open-vocabulary Semantic Segmentation

Table 6: Results on open-vocabulary semantic segmentation. † means the CLIP ViT backbone is initialized with the checkpoint of the corresponding method trained on CC2.5M.

Mathad	Dealthona	ADH	E-150	ADE	E-847	PC-59		
Method	Dackbolle	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc	
OVSeg [28]	ViT-B/16	24.8	-	7.1	-	53.3	-	
SAN [57]	ViT-B/16	27.5	45.6	10.1	21.1	53.8	73.0	
SAN [57]	ViT-L/14	32.1	50.7	12.4	25.2	57.7	77.6	
CatSeg [7]	ViT-B/16	27.2	41.2	8.4	16.6	57.5	74.0	
CatSeg [7]	ViT-L/14	31.5	46.2	10.8	20.5	62.0	78.3	
CatSeg+CLIPSelf [†] [55]	ViT-B/16	29.7	45.1	10.1	17.2	55.3	73.4	
CatSeg+CLIPSelf [†] [55]	ViT-L/14	34.9	52.9	13.6	23.0	59.1	77.1	
CatSeg+FineCLIP [†]	ViT-B/16	32.4 _{↑5.2}	50.5 <mark>↑9.3</mark>	12.2 _{14.2}	22.2 _{15.6}	56.0 _{↓1.5}	74.4 <mark>↑0.4</mark>	
CatSeg+FineCLIP [†]	ViT-L/14	36.1 ^{+4.6}	53.5 _{7.3}	14.1 _{^3.3}	23.8 _{13.3}	59.9 _{↓2.1}	78.3 _{↑0}	

Downstream Application

(Please refer to the original paper for detailed Settings)

2. Application to Image-level Task

Zero-shot image-text retrieval

Table 7: Comparative results on zero-shot image-text retrieval on the Flickr30k and MSCOCO datasets. R@i denotes Recall at i. All approaches adopt ViT-B/16 architecture with input image size of 224×224 . † indicates that the method is initialized with pre-trained CLIP and further trained on CC2.5M. The methods with gray background are pre-trained on large-scale dataset.

	Flickr30k						MSCOCO					
	image-to-text			text-to-image			image-to-text			text-to-image		
Methods	R@1	R@5	R@10									
CLIP[40]	84.0	96.1	98.2	71.6	90.3	94.1	56.2	80.6	88.2	42.4	68.6	78.3
SPARC[3]	84.4	97.6	98.7	72.0	91.2	94.9	57.6	81.2	88.5	43.0	68.6	78.5
PACL[35]	69.6	89.7	94.2	54.9	80.7	87.3	41.8	67.8	77.6	29.1	54.3	65.5
GLoRIA[16]	78.0	95.5	98.0	68.4	88.9	93.2	49.7	75.4	84.6	38.9	65.1	75.2
MGCA[52]	82.2	96.1	98.1	67.7	88.5	93.2	57.6	80.5	87.8	39.8	65.7	75.3
FILIP[58]	69.0	89.8	94.0	55.8	81.5	87.9	40.2	66.0	76.3	29.5	55.3	66.3
CLIP [†] [40]	81.6	96.2	98.0	64.9	88.3	93.6	51.1	76.4	84.9	37.6	63.9	74.3
RegionCLIP [†] [70]	3.9	12.2	18.4	7.9	22.7	71.3	2.0	7.1	11.5	3.4	11.8	19.0
CLIPSelf [†] [55]	33.8	61.7	73.0	35.0	61.3	32.7	18.8	38.9	50.4	16.1	34.5	45.1
FineCLIP [†]	82.5	96.4	98.6	67.9	89.1	94.1	54.5	78.6	85.8	40.2	66.5	76.1

- We present FineCLIP, which combines multi-grained contrastive learning paradigm and the real-time self-distillation scheme to achieve better fine-grained understanding.
- We develop an automated region-text data generation pipeline utilizing advanced LVLMs, and demonstrate its effectiveness in providing valuable fine-grained semantics.
- Extensive experiments on dense prediction and image-level benchmarks show that our **FineCLIP outperforms previous arts in most scenes and exhibits promising scalability.**