

UGC: Universal Graph Coarsening

Mohit Kataria¹, Sandeep Kumar^{2,1}, Jayadeva^{2,1}

¹Yardi School of Artificial Intelligence, ²Department of Electrical Engineering Indian Institute of Technology, Delhi

Sandeep Kumar ksandeep@ee.iitd.ac.in

Jayadeva jayadeva@ee.iitd.ac.in

● Background

• Proposed framework UGC

● Quality checks for the coarsened graph

● Experiments

Graph Coarsening

- The objective is to reduce an input graph $\mathcal{G}(V, A, X)$ with *N*-nodes into a new graph ^c (V', A', X') with *n*-nodes.
- The **G**raph **C**oarsening (GC) problem requires learning of a coarsening matrix **C**, which defines the linear mapping from $V \rightarrow V'$.

Original Graph

- **Peature size** $X \in \mathbb{R}^{N \times d}$
- Vertices are of order $O(N)$
- Edges are of order $O(N^2)$
- Features are of order $O(Nd)$

Coarsened Graph

- Feature size $X' \in \mathbb{R}^{n \times d}$
- Vertices are of order $\mathcal{O}(n)$
- Edges are of order $O(n^2)$
- Features are of order $O(nd)$

Toy Example

- Every non-zero entry *Cij* denotes the mapping of the *i th* node of to the *j th* super-node \mathscr{G}_{ς} .
- A valid *C* matrix must belong to set S defined as

$$
\mathcal{S} = \left\{ \mathcal{C} \in \mathbb{R}^{N \times n}, \mathcal{C}_{ij} \in \{0, 1\}, \|\mathcal{C}_i\| = 1, \langle \mathcal{C}_i, \mathcal{C}_j \rangle = 0, \forall i \neq j, \langle \mathcal{C}_l, \mathcal{C}_l \rangle = d_i, \|\mathcal{C}_i^T\|_0 \ge 1 \right\}
$$

• $||\mathcal{C}_i^T||_0 \ge 1$ makes sure that no supernode is empty and $\langle \mathcal{C}_i, \mathcal{C}_j \rangle = 0$ ensures that each node of $\mathcal G$ is mapped to a unique supernode.

What has been done on graph coarsening?

● Optimization and Heuristics

- Loukas 2018: Two variants, edge-based (LVE) and neighborhood-based (LVN)
- Kumar 2023: FGC
- Dorfler 2013: Kron reduction
- Chen 2011: Algebraic Distance
- Livne 2011: Affinity GS
- Dhillon 2007: Heavy Edge

● GNN based graph condensation

- Jin 2021: GCond
- Zheng 2023: SFGC

● Scaling GNN using coarsening methods

- Huang 2021: SCAL
- Cai 2021: GOREN

Research gaps

● Existing optimization and heuristic based graph coarsening methods are computationally demanding.

● Existing graph condensation methods require full graph training to get a condensed graph, due to which these methods are not suitable for the scalability of GNN models.

● Lack of graph coarsening methods for heterophilic graphs.

● How to employ graph coarsening methods for scalibility of graph neural networks.

Research gaps

- Existing graph coarsening methods are computationally demanding. UGC uses a hashing-based method, which is super fast.
- Existing graph condensation methods require full graph training to get a condensed graph. UGC doesn't require full graph

training.

● Lack of graph coarsening methods for heterophilic graphs.

UGC uses both feature level and structure level information to handle heterohily graphs.

● How to employ graph coarsening methods for scalibility of graph neural networks. A coarsened graph can be used to

scale GNN based methods.

● Background

● Proposed framework UGC

● Quality checks for the coarsened graph

● Experiments

Proposed framework: UGC

The UGC framework comprises three main components: (a) construction of an *augmented feature matrix*; (b) construction of a *coarsening matrix;* and (c) construction of a *coarsened graph*.

Augmented feature matrix

● In order to create a universal GC framework suitable for both homophilic as well as heterophilic datasets, it is important to consider features at both i) the node level, i.e., features, and ii) the structure-level, i.e., adjacency matrix, together.

A heterophily factor $0 < \alpha < 1$ may be used to denote the degree of heterophily. α is calculated as the fraction of edges between nodes of different classes to the total number of edges.

Coarsening matrix

● UGC uses the Locality Sensitive Hashing (LSH) technique to create coarsening matrix. LSH is defined as

Definition: Let d be a distance measure, and let $d_1 < d_2$ be two distances. A family of functions F is said to be (d_1, d_2, p_1, p_2) -sensitive if for every $f \in F$ the following two conditions hold:

1. If $d(x, y) \leq d_1$ then probability $|f(x) = f(y)| \geq p_1$

2. If $d(x, y) > d_2$ then probability $|f(x) = f(y)| < p_2$

- \bullet $F_i \in \mathbb{R}^d$ represent the augmented feature vector of node $\textbf{\textit{v}}_i$.
- Let $W \in \mathbb{R}^{d \times l}$ and $b \in \mathbb{R}^l$ be the random hashing matrices with *l* hash functions. The hash indices generated by the *k th* projector for the *i th* node is given as
- The hash value assigned to the *ith* node is given by $h_i = maxOccured\{h_i^1, h_i^2 h_i^l\}$ which defines the linear mapping $\pi: V \rightarrow V'$ and construction of the coarsening matrix.

Coarsened graph

• A pair of super-nodes, say $\widetilde{v_i}$ and $\widetilde{v_j}$, in \mathscr{G}_c are connected; if any of the nodes has an edge to any of the nodes, say $v \in \pi^{-1}(\widetilde{v}_i)$ in \mathscr{G} , i.e., $\exists u \in \pi^{-1}(\widetilde{v}_i), v \in \pi^{-1}(\widetilde{v}_j)$ such that A_{uv} != 0.

• The coarsened graph (\mathscr{G}_c) is weighted, and the weight assigned to the edge between nodes $\widetilde{v_i}$ and $\widetilde{v_i}$ is given by, $\widetilde{A}_{ij} = \sum_{(u \in \pi^{-1}(\widetilde{v_i}), v \in \pi^{-1}(\widetilde{v_i}))} A_{uv}$ and the adjacency matrix of \mathcal{G}_{c} is defined as $\widetilde{A} = \mathcal{C}^{T} A \mathcal{C}$.

• Supernode features are calculated as $\widetilde{F} = \mathcal{C}^T F$

● Background

• Proposed framework UGC

● Quality checks for the coarsened graph

● Experiments

Quality checks for the coarsened graph

UGC employs different matrices to quantify the quality of the coarsened graph.

● Spectral Similarity

 \bullet ε - similarity

● LSH similarity

● Using node classification accuracy when trained on the coarsened graph.

Spectral Similarity

• Relative Eigen Error (REE) gives the means to quantify the measure of the eigen properties of the original graph $\mathscr G$ that are preserved in the coarsened graph $\mathscr G_{\mathsf{c}}.$

• REE is defined as follows: $REE(L, L_c, k) = \frac{1}{k} \sum_{i=1}^{k} \frac{|\tilde{\lambda}_i - \lambda_i|}{\lambda_i}$ where λ_i and $\tilde{\lambda}_i$ are the top k eigenvalues of the original graph Laplacian L and the coarsened graph Laplacian L \Box

ɛ-similarity

■ UGC gives a coarsened graph, which satisfies the E-similarity theorem, which is stated as:

The input graph $\mathcal{G}(L,F)$ and the coarsened graph $\mathcal{G}_c(L_c,\tilde{F})$ Theorem: obtained using the proposed UGC algorithm are ϵ -similar with $\epsilon > 0$, i.e.,

 $(1-\epsilon)\|F\|_L \leq \|\widetilde{F}\|_{L_{\epsilon}} \leq (1+\epsilon)\|F\|_L$

where L and L_c are the laplacian matrices of G and \mathcal{G}_c respectively.

• To give a strict bound on the $\mathcal{E}(\leq 1)$ we updated \widetilde{F} to \widehat{F} by minimizing the term $\min_{\widehat{F}} f(\widehat{F}) = \text{tr}(\widehat{F}^T \mathcal{C}^T L \mathcal{C} \widehat{F}) + \frac{\alpha}{2} \|\mathcal{C}\widehat{F} - F\|_F^2$

which aim to enforce the Dirichlet smoothness condition in super-node features

LSH similarity

• The LSH family used in our framework ensures that the probability of two nodes going to the same supernode is directly related to the distance between their features.

Theorem: The probability that two nodes v and u will collide and go to a super-node under a hash function drawn uniformly at random from a 2-stable distribution is inversely proportional to $c = ||v - u||_2$ and it is represented by $p(c) = Pr_{w,b}[h_{w,b}(v) = h_{w,b}(u)] = \int_0^r \frac{1}{e} f_p(\frac{t}{e}) (1 - \frac{t}{e}) dt.$

● Background

• Proposed framework UGC

● Quality checks for the coarsened graph

● Experiments

Experiments

The conducted experiments establish the performance of UGC concerning

• Computational efficiency,

● Preservation of spectral properties,

• Potential extensions of the coarsened graph \mathscr{G}_{c} into real-world applications. We have used node classification tasks on real-world datasets.

● Model agnostic behaviour of UGC.

Run time

● UGC's main contribution lies in its computational efficiency. The time required to compute the coarsening matrix *C* is summarized in below Table.

- UGC is able to coarsen down massive datasets like *Yelp (716.8k nodes)*, which was previously not possible.
- UGC is the fastest graph coarsening method.

Scaling GNN via graph coarsening

To scale the training process, we used coarsened graph \mathscr{G}_{ϵ} to train a GNN model; all the predictions are made on test data from the original graph.

Node classification accuracy

● UGC demonstrated superior performance compared to existing methods in 7 out of the 9 datasets. Reported are the accuracy of the GNN models when trained with 50% coarsen graph.

● Results from four diverse models, namely GCN, GraphSage, GIN, and GAT, have been incorporated to demonstrate the robustness and model-agnostic nature of UGC.

● Background

• Proposed framework UGC

● Quality checks for the coarsened graph

● Experiments

- UGC is the fastest graph coarsening method.
- UGC preserves spectral properties.
- UGC satisfy ɛ-similarity and LSH similarity.
- UGC scales training of GNN models.

Thank you