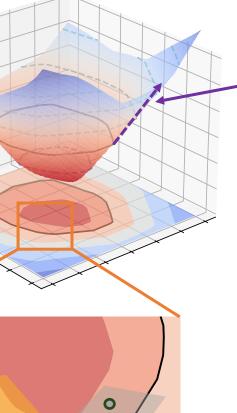
WashU UC San Diego

SEEV: Synthesis with Efficient Exact Verification for ReLU Neural Barrier Functions

Synthesis with Efficient Exact Verification (SEEV) Background Goal: Synthesize NCBFs to be feasible and correct. **Safe Region:** $C = \{x: h(x) \ge 0\} \subseteq X$ Training dataset \mathcal{T} : initialized by uniform sampling over \mathcal{X} . **Positive invariance:** $x(t) \in \mathcal{C} \subseteq \mathcal{X}$ for $\min_{\Delta} \lambda_{\mathcal{B}} \mathcal{L}_{\mathcal{B}}(\mathcal{T}) + \lambda_{f} \mathcal{L}_{f}(\mathcal{T}) + \lambda_{c} \mathcal{L}_{c}(\mathcal{T})$ all $t \ge 0$, if $x(0) \in \mathcal{C}$. Unsafe Region 📮 Zero-level Se Safety: positive invariance of a given safety region \mathcal{C} . **Dynamics:** $\dot{x}(t) = f(x(t)) + g(x(t))u(t)$ (1) -2.00 x 2.00 **Control Barrier Function (CBF)** b(x) is a smooth function that $\min \|u - \pi_{\text{nom}}(x)\|_2^2$ evaluates the 'safety' of the system. Let $\mathcal{D} = \{x: b(x) \ge 0\} \subseteq \mathcal{C}$. Function b(x) is a CBF if there exist u and class- κ function α , s.t. $\frac{\partial b}{\partial x} (f(x(t)) + g(x(t))u(t)) \ge -\alpha (b(x(t)))$ (2)However, *u* does not exist if $\frac{\partial b}{\partial x}g(x(t)) = 0$ and $\frac{\partial b}{\partial x}f(x(t)) < 0$. Step 3 Penalize dissimilarity **Exact Verification of ReLU NCBFs [1] Nagumo's Theorem** The closed set \mathcal{D} is positive invariant iff, whenever boundary states $x \in \partial D$, $u \in U$ satisfies $\frac{\partial b}{\partial x}(f(x) + g(x)u) \ge 0.$ Efficient Exact Verification for ReLU NBFs **Intuition: Piece-wise Linearity of ReLU** How to compute the $\partial b/\partial x$ efficiently? • Derivative of a NCBF can be characterized by activation sets **S**. (Enumerate **S**) **Problem Studied** • Derivative of a NCBF in one activation set **S** is linear. (Linear Program) Given a system (1), synthesize a ReLU NCBF $b_{\theta}(x)$ s.t. • Feasible: for all $x \in \mathcal{D}$, there exist *u* satisfying (2) Correct: $\mathcal{D} \subseteq \mathcal{C}$ (safe region) Challenge 1: Scalability for high-dimensional systems and deep NNs. Challenge 2: Synthesize NCBFs satisfying conditions Loss may not converge to zero Hard to obtain a formal verification Fir Contributions Features: Propose a framework for Synthesis with NCBF Efficient Exact Verification (SEEV) for • Verification: (i). Efficient; (ii). Exact verification with SMT solver [3] ReLU NCBFs. numerate boundary ► Safety CE NCBF Sufficient Condition Enumeration Fail hyperplanes using Develop a training procedure that Training Verification NBFS (LP) Correctness Interval $\mathcal{U}(20)$ reduces the number of segments that $= [1 \ 1 \ 0 \ \dots \ 1 \ 0]$ Hyperplanes Verification (18) & Hinges $S_1 = [1 \ 1 \ 1 \ \dots \ 0 \ 0]$ must be verified. $\mathcal{U} \in \mathbb{R}^m$ (21) $\{\mathbf{S}_2 = [1 \ 1 \ 0 \ \dots \ 0 \ 0]$ $S_3 = [1 \ 1 \ 1 \ \dots \ 0 \ 0]$ Construct hierarchical verification that Pass Efficient Valid Training → Pass NCBF Verification efficiently enumerate hyperplanes, Dataset Yes Enumerate hinges (LP) Sufficient Exact Condition $\{(S_0, S_3), (S_1, S_2), (S_1, S_2), \}$ Condition Verification for exploit sufficient conditions and conduct Heuristics (S_0, S_3, S_2) Hinges (22) Counterexamples exact verification. Fail \longrightarrow Safety CE

Hongchao Zhang^{*1}, Zhizhen Qin^{*2}, Sicun Gao², Andrew Clark¹ ¹Washington University in St. Louis, ²University of California, San Diego * Equal Contribution



 \mathcal{L}_c correctness regularizer enforces the correctness of the NCBF.

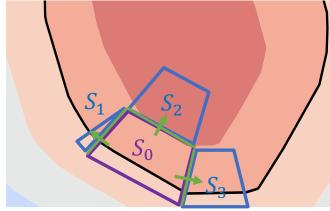
 \mathcal{L}_f feasibility regularizer $\mathcal{L}_f = \|u - \pi_{nom}(x)\|_2^2 + r$ where *r* is the slack variable for the safety filter [2]

s.t.
$$\mathcal{W}(\mathbf{S}_l)^T (f(\hat{x}) + g(\hat{x})u) + r \ge 0$$

 $\mathcal{L}_{\mathcal{B}}$ Boundary activation regularizer limits the number of hyperplanes & hinges by penalizing the dissimilarity

Step 1 Identify boundary samples; Step 2 Clustering;

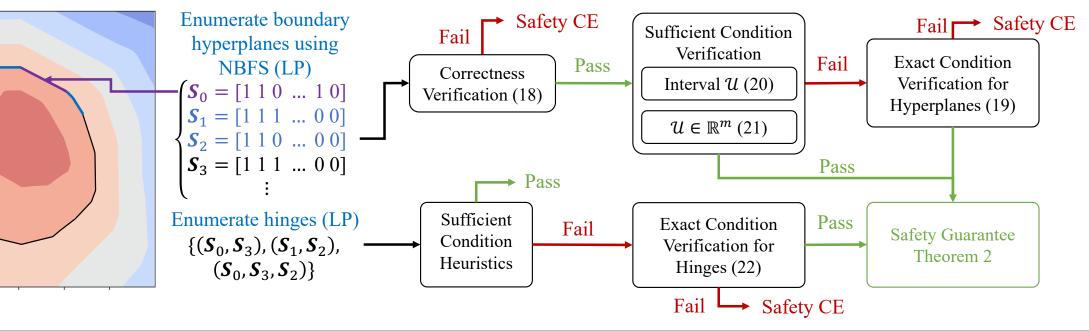
$$\mathcal{L}_{\mathcal{B}} = \frac{1}{N_{\mathbf{B}}} \sum_{\mathbf{B}_{i} \in \mathcal{B}} \frac{1}{\left|\mathcal{T}_{\mathbf{B}_{i}}\right|^{2}} \sum_{\hat{x}_{i}, \hat{x}_{j} \in \mathcal{T}_{\mathbf{B}_{i}}} \left\|\phi_{\sigma_{k}}(x_{i}) - \phi_{\sigma_{k}}(x_{j})\right\|_{2}^{2}$$



 $S_0 = [1 \ 1 \ 0 \ \dots \ 1 \ 0]$ $\rightarrow S_1 = [1 \ 1 \ 1 \ \dots \ 1 \ 0]$ → $S_2 = [1 \ 0 \ 0 \ \dots \ 1 \ 0]$ $\rightarrow S_3 = [1 \ 1 \ 0 \ \dots \ 0 \ 0]$ The activation of ReLU neuron flips

Binary Search nd S_0 containing b(x) = 0	S ₀	Search neighbors in	$\{S_1, S_2, \dots, S_m\}$	Find the sets of <i>S</i>	
		a BFS manner		and $\mathcal{X}(S)$	

Enumeration: (i). Only rely on linear program; (ii). CPU only; (iii) Multi-process enabled



We consider the Darboux, Obstacle Avoidance (OA), hi-ord₈ and Spacecraft Rendezvous (SR) problems and compared our approach with SMT-based verifiers.

Experiments

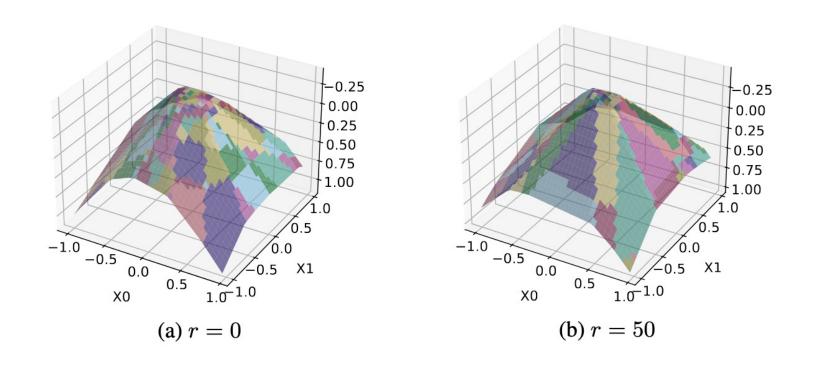


Table1: Comparison of N the number of boundary hyperplanes and C coverage of the safe region \mathcal{D} of NCBF trained with (r) and without (o) boundary hyperplane regularizer

Case	n	L	Μ	N_o	C_o	$N_{r=1}$	$ ho_{r=1}$	$N_{r=10}$	$ ho_{r=10}$	$N_{r=50}$	$ ho_{r=50}$
OA	3	2	8	26	89.46%	25	0.996	23.3	0.994	13.3	1.006
	3	2	16	116	83.74%	119	1.012	111	1.005	98	1.055
	3	4	8	40	91.94%	38	0.988	36	0.993	13	0.937
	3	4	16	156	87.81%	170	0.971	147	1.003	64	1.038
SR	6	2	8	2868	98.58%	2753	1	1559	1	418	1
	6	4	8	6371	98.64%	6218	1	3055	1	627	1
	6	2	16	N/A	N/A	204175	N/A	68783	N/A	13930	N/A

Table2: Comparison of verification run-time of NCBF in seconds.

Case	n	L	М	N	t_h	t_g	SEEV	Baseline [23]	dReal	Z3
Darboux	2	2	256	15	2.5s	0	2.5s	315s	>3h	>3h
	2	2	512	15	3.3s	0	3.3s	631s	>3h	>3h
OA	33	2 4	16 8	86 15	0.41s 0.39	0 0	0.41s 0.39	16.0s 16.1s	>3h >3h	>3h >3h
	3 3	4 1	16 128	136 5778	0.65s 20.6s	0 0	0.65s 20.6s	36.7s 207s	>3h >3h	>3h >3h
hi-ord ₈	8	2	8	73	0.54s	0	0.54s	>3h	>3h	>3h
	8	2	16	3048	11.8s	0	11.8s	>3h	>3h	>3h
	8	4	16	3984	22.4s	0	22.4s	>3h	>3h	>3h
SR	6	2	8	2200	7.1s	2.7s	9.8s	179s	UTD	UTD
	6	4	8	4918	45.8s	14.3s	60.1s	298.7s	UTD	UTD

SEEV outperforms the LiRPA-based method proposed in the baseline [23]

SOTA SMT-based Methods are not directly applicable

[1] Zhang, Hongchao, et al. "Exact verification of relu neural control barrier functions." Advances in neural information processing systems 36 (2023): 5685-5705.

[2] Dawson, Charles, Sicun Gao, and Chuchu Fan. "Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control." IEEE Transactions on Robotics 39.3 (2023): 1749-1767. [3] Gao, Sicun, Soonho Kong, and Edmund M, Clarke, "dReal: An SMT solver for nonlinear theories over the reals." International conference on automated deduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

