#### Gradient-free Decoder Inversion in Latent Diffusion Models



# Seongmin Hong1Suh Yoon Jeon1Kyeonghyun Lee1Ernest K. Ryu2,\*Se Young Chun1,3,\*

<sup>1</sup>Dept. of Electrical and Computer Engineering, <sup>3</sup>INMC & IPAI, Seoul National University <sup>2</sup>Dept. of Mathematics, University of California, Los Angeles {smhongok, euniejeon, litiphysics, sychun}@snu.ac.kr, eryu@math.ucla.edu





Intelligent Computational imaging Lab.





#### Decoder is used in latent diffusion models.







#### Encoder is the right-inverse of the decoder.



# What is the left-inverse of the Decoder?

#### Encoder? No.



\* Equality holds if the encoder and decoder are linear. (Remark 2)

#### Gradient descent? Heavy.



We propose a gradient-free decoder inversion algorithm!

#### Motivation of our grad-free method

$$ext{find}_{oldsymbol{z} \in \mathbb{R}^F} \quad oldsymbol{x} = \mathcal{D}(oldsymbol{z}) \qquad ext{ is difficult.}$$

 $\inf_{\boldsymbol{z} \in \mathbb{R}^F} \quad \mathcal{E}(\boldsymbol{x}) = \mathcal{E}(\mathcal{D}(\boldsymbol{z})) \quad \text{ is easier (Remark 1).}$ 

#### This is equivalent to:

 $\inf_{\boldsymbol{z} \in \mathbb{R}^F} \quad \boldsymbol{z} = \boldsymbol{z} - \rho(\mathcal{E}(\mathcal{D}(\boldsymbol{z})) - \mathcal{E}(\boldsymbol{x})), \quad \forall \rho \in \mathbb{R} \cap \{0\}^C$ 

Fixed point iteration:  $\boldsymbol{z}^{k+1} = \boldsymbol{z}^k - \rho(\mathcal{E}(\mathcal{D}(\boldsymbol{z}^k)) - \mathcal{E}(\boldsymbol{x}))$ 









## Fast, Accurate, Memory-efficient, and Precision-flexible.











## Convergence Analysis

#### Our method provably converges.

**Theorem 1** (Convergence of the forward step method). Let  $\beta > 0$ ,  $0 < \rho < 2\beta$ , and  $x \in \mathbb{R}^N$ . Assume  $\mathcal{T}(\cdot) = \mathcal{E} \circ \mathcal{D}(\cdot) - \mathcal{E}(x)$  is continuous. Consider the iteration

$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^k - \rho \mathcal{T} \boldsymbol{z}^k \qquad \text{for} \quad k = 0, 1, \dots$$
(8)

Assume  $z^*$  is a zero of T (i.e.,  $Tz^* = 0$ ) and

$$\langle \mathcal{T}\boldsymbol{z}^k, \boldsymbol{z}^k - \boldsymbol{z}^\star \rangle \ge \beta \|\mathcal{T}\boldsymbol{z}^k\|_2^2 \quad \text{for} \quad k = 0, 1, \dots$$
 (9)

Then,  $\mathcal{T}\boldsymbol{z}^k \to 0$ . If, furthermore,  $\boldsymbol{z}^k \to \boldsymbol{z}^{\infty}$ , then  $\boldsymbol{z}^{\infty}$  is a zero of  $\mathcal{T}$  (i.e.,  $\mathcal{T}\boldsymbol{z}^{\infty} = 0$ ).

#### Our method provably converges with momentum: $y^{k} = z^{k} + \alpha(z^{k} - z^{k-1})$ $z^{k+1} = y^{k} - 2\lambda\beta T y^{k}$

**Theorem 2** (Convergence of the inertial KM iterations). Let  $0 < \alpha < 1$ ,  $\beta > 0$ ,  $\lambda > 0$  and  $x \in \mathbb{R}^N$ . Assume  $\mathcal{T}(\cdot) = \mathcal{E} \circ \mathcal{D}(\cdot) - \mathcal{E}(x)$  is continuous. Let  $(z^k, y^k)$  satisfy (10) and (11). Assume  $z^*$  is a zero of  $\mathcal{T}$  (i.e.,  $\mathcal{T}z^* = 0$ ) and the following holds:

$$\langle \mathcal{T}\boldsymbol{y}^k, \boldsymbol{y}^k - \boldsymbol{z}^\star \rangle \ge \beta \|\mathcal{T}\boldsymbol{y}^k\|_2^2 \quad \text{for} \quad k = 0, 1, \dots$$
 (12)

If

$$\lambda(1 - \alpha + 2\alpha^2) < (1 - \alpha)^2,\tag{13}$$

then  $(\boldsymbol{y}^k)$  and  $(\boldsymbol{z}^k)$  converge to the same limit points.

#### Validation on the assumption

• Cocoercivity: 
$$\frac{\langle \mathcal{ED}\boldsymbol{z}^{\infty} - \mathcal{ED}\boldsymbol{z}^{k}, \boldsymbol{z}^{\infty} - \boldsymbol{z}^{k} \rangle}{\|\mathcal{ED}\boldsymbol{z}^{\infty} - \mathcal{ED}\boldsymbol{z}^{k}\|_{2}^{2}} \geq \beta > 0$$



#### Validation on the assumption in many models



#### Causality & Evidences

#### **Most instances** $\Rightarrow$ **Cocoercivity** $\Rightarrow$ **Convergence** $\Rightarrow$ **Accuracy**



## Experiments & Applications

#### Fast, Accurate, Memory-efficient, Precision-flexible



### Application: tree-rings watermarking

• Invisible, robust watermarking on the initial noise of LDM

| LDM            |                  | Encoder | Gradient-based [14] | Gradient-free (ours) |
|----------------|------------------|---------|---------------------|----------------------|
| SD2.1 [37]     | Accuracy         | 186/300 | 207/300             | 202/300              |
|                | Peak memory (GB) | 5.71    | 11.4                | 6.35                 |
|                | Runtime (s)      | 5.66    | 38.0                | 22.9                 |
| InstaFlow [24] | Accuracy         | 149/300 | 227/300             | 227/300              |
|                | Peak memory (GB) | 2.93    | 8.84                | 3.15                 |
|                | Runtime (s)      | 3.55    | 35.9                | 13.6                 |

#### Application: Background-preserving editing



#### Conclusion

- Proposed gradient-free decoder inversion for LDMs with guaranteed convergence, with or without momentum.
- Validated the assumptions and theorems for various LDMs.
- Experimentally showed advantages over gradient-based methods.
  - Fast: up to 5× faster
  - Accurate: up to 2.3 dB lower in NMSE
  - Memory-efficient: up to 89% saved
  - Precision-flexible: 16-bit vs 32-bit

# See you on: Fri 13 Dec 11 a.m. PST — 2 p.m. PST

## Gradient-free Decoder Inversion in Latent Diffusion Models

Project: <u>https://smhongok.github.io/dec-inv.html</u> arXiv: <u>https://arxiv.org/abs/2409.18442</u> github: <u>https://github.com/smhongok/dec-inv</u> mail: <u>smhongok@snu.ac.kr</u> Lab: <u>https://icl.snu.ac.kr</u>



NEURAL INFORMATION PROCESSING SYSTEMS

SEOUL NATIONAL UNIVERSITY

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [NO.2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University)] and National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2022R1A4A1030579, NRF2022M3C1A309202211). The authors acknowledged the financial support from the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University.

#### Intelligent Computational imaging Lab (ICL)