Neural P³M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs

Yusong Wang^{1,#}, Chaoran Cheng^{2,#}, Shaoning Li^{3,#}, Yuxuan Ren⁴, Bin Shao⁵, Ge Liu², Pheng-Ann Heng³, Nanning Zheng^{1,*}

¹ Xi'an Jiaotong University ²University of Illinois Urbana-Champaign ³ The Chinese University of Hong Kong ⁴University of Science and Technology of China ⁵Microsoft Research AI4Science # Equal Contribution * Corresponding Author

Project URL: https://github.com/OnlyLoveKFC/Neural_P3M

Background – Introduction to Geometric GNNs

- Geometric graph neural networks have emerged as powerful tools for modeling molecular geometry.
- However, they encounter **limitations in effectively capturing long-range interactions** in large molecular systems due to **the localization assumption of GNN**.

Preliminary – Ewald Summation

Consider the pair-wise electrostatic potential as $\psi(r_{ij}) = 1/||r_{ij}||_2$. The total electrostatic potential energy E can be evaluated as the infinite summation over pairs under the periodic boundary condition (PBC) as:

$$
E = \frac{1}{2} \sum_{\mathbf{n}} \sum_{i=1}^{N} \sum_{j=1}^{N} \int \rho_i(\mathbf{r}) \rho_j(\mathbf{r}') \psi(||\mathbf{r} - \mathbf{r}' + \mathbf{n} \cdot \mathbf{c}||_2) d^3 \mathbf{r} d^3 \mathbf{r}' = \frac{1}{2} \sum_{i=1}^{N} \int \rho_i(\mathbf{r}) \phi_{[i]}(\mathbf{r}) d^3 \mathbf{r}
$$

- $\rho_i(\mathbf{r})$ is charge density.
- **c** is the cell vector.
- *is the number of atoms in a cell.*
- The ' summation is introduced to exclude the term $j = i$, if and only if $\mathbf{n} = 0$. $\phi_{[i]}(\mathbf{r})$ represents the potential generated by all particles excluding the particle i .

A continuous partition function that delays rapidly with respect to the distance is used to separate the short-range and long-range terms:

$$
\psi^{\rm sr}(\mathbf{r}) = \frac{1 - \text{erf}(\beta \|\mathbf{r}\|_2)}{\|\mathbf{r}\|_2}, \psi^{\rm lr}(\mathbf{r}) = \frac{\text{erf}(\beta \|\mathbf{r}\|_2)}{\|\mathbf{r}\|_2}
$$

Preliminary – Ewald Summation

With the rapid delay of the partition function, it is safe to assume convergence by only considering the interaction pairs within a specific cutoff distance as:

$$
E^{\rm sr} = \frac{1}{2} \sum_{i=1}^{N} \int \rho_i(\mathbf{r}) \phi_{[i]}^{\rm sr}(\mathbf{r}) d^3 \mathbf{r} = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} q_i q_j \psi^{\rm sr}(\mathbf{r}_{ij})
$$

By the Parseval's theorem, the corresponding long-range term can be expressed as the summation in the Fourier domain as:

$$
E^{\rm lr} = \frac{1}{2} \sum_{i=1}^{N} \int \rho_i(\mathbf{r}) \phi_{[i]}^{\rm lr}(\mathbf{r}) d^3 \mathbf{r} = \frac{1}{2V} \sum_{\mathbf{m} \neq 0} \tilde{g}(\mathbf{m}) \tilde{\gamma}(\mathbf{m}) ||\tilde{\rho}(\mathbf{m})||_2^2
$$

Using the convolution theory: $E^{\text{lr}} = \frac{1}{2}$ $\frac{1}{2}\sum_{j=1}^{N} q_j[g \otimes \gamma \otimes \rho](\mathbf{r}_j) = \frac{1}{2}$ $\frac{1}{2}\sum_{j=1}^N q_j[G \otimes \rho](\mathbf{r}_j)$

As the long-range term introduces the self-interaction energy, a correction term is also applied to the final potential energy as:

$$
E^{\text{self}} = -\frac{1}{2} \sum_{i=1}^{N} \rho_i(\mathbf{r}) \phi_i^{\text{lr}}(\mathbf{r}) d^3 \mathbf{r} = -\frac{\beta}{\sqrt{\pi}} \sum_{i=1}^{N} q_i^2
$$

Methods – Meshing up the Ewald Summation with the Trainable Version

- Particles with their continuous coordinates, must be scattered onto grid-based densities (meshes) [1].
- The discrete approximation for E^{lr} can be expressed as [2]
- Reimage the traditional mathematical operations in mesh-based methods in a trainable manner, laying the foundation of Neural P³M framework.

Methods – Overall Neural P³M framework architecture

(a) Model Architecture

(b) Neural P³M Block

(e) Repr. Assignment

Experiments – MD22

Mean absolute errors (MAE) of energy and forces on 7 large molecules in MD22 datasets compared with state-of-the-art algorithms

• **Flexibility.** Neural P3M is well-suited for a wide range of molecular systems without constraints, whereas LSRM relies on fragmentation algorithms like BRICS.

Experiments– OE62

Energy MAEs and computation times per input structure on the OE62 dataset when integrating various GNNs into Neural P³M

- **Enhancement and Versatility.** Combined with various models, Neural P³M shows a consistent improvement.
- **Efficiency.** Thanks to fast Fourier transformation, Neural P³M is faster than Ewald MP in most cases.

Thanks

