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Background – Introduction to Geometric GNNs

• Geometric graph neural networks have emerged as powerful tools for modeling molecular 

geometry. 

• However, they encounter limitations in effectively capturing long-range interactions in large 

molecular systems due to the localization assumption of GNN.



Preliminary – Ewald Summation

Consider the pair-wise electrostatic potential as 𝜓 𝑟𝑖𝑗 = 1/||𝑟𝑖𝑗||2 .The total electrostatic potential 

energy 𝐸 can be evaluated as the infinite summation over pairs under the periodic boundary condition 

(PBC) as:
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• 𝜌𝑖(𝐫) is charge density.

• c is the cell vector.

• 𝑁 is the number of atoms in a cell. 

• The ′ summation is introduced to exclude the term 𝑗 = 𝑖, if and only if 𝐧 = 0. 𝜙[𝑖](𝐫) represents the 

potential generated by all particles excluding the particle 𝑖.

A continuous partition function that delays rapidly with respect to the distance is used to separate the 

short-range and long-range terms:
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Preliminary – Ewald Summation

With the rapid delay of the partition function, it is safe to assume convergence by only considering 

the interaction pairs within a specific cutoff distance as:
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By the Parseval’s theorem, the corresponding long-range term can be expressed as the summation 

in the Fourier domain as:
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Using the convolution theory: 𝐸lr =
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As the long-range term introduces the self-interaction energy, a correction term is also applied to 

the final potential energy as:
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Methods – Meshing up the Ewald Summation with the Trainable Version

Meshing up Methods Neural Network
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1

2


𝑖,𝑗 ∈ℰ

𝑞𝑖𝑞𝑗𝜓sr 𝐫𝑖𝑗 Geometric GNNs

Charge/Representation 

Assignment
𝜌𝑀 𝐫𝑝 =

1

𝑉grid
σ𝑖=1

𝑁 𝑞𝑖𝑊 𝐫𝑝 − 𝐫𝑖  [1] 𝑚 ← 𝑎 𝑖
𝑙 = MLP ෨ℎ𝑗

𝑙 ∙ 𝑊𝑚←𝑎
𝑙 𝑓𝑖𝑗

assign

Long-range Block 𝐸lr ≈
1

2
σ𝐫𝑝∈𝒱 𝑉grid 𝜌𝑀 𝐫𝑝 𝐺 ⊗ 𝜌𝑀 𝐫𝑝  [2] 𝑚𝑙 ← 𝜎 𝑊long𝑚𝑙 + ℱ−1 ෨𝐺 ∙ ℱ 𝑚𝑙

• Particles with their continuous coordinates, must be 

scattered onto grid-based densities (meshes) [1].

• The discrete approximation for 𝐸lr can be expressed 

as [2]

• Reimage the traditional mathematical operations in 

mesh-based methods in a trainable manner, laying 

the foundation of Neural P3M framework.



Methods – Overall Neural P3M framework architecture



Mean absolute errors (MAE) of energy and forces on 7 large molecules in MD22 datasets 

compared with state-of-the-art algorithms

Experiments – MD22

• Flexibility. Neural P3M is well-suited for a wide range of molecular systems without constraints, 

whereas LSRM relies on fragmentation algorithms like BRICS.



Experiments – OE62

Energy MAEs and computation 

times per input structure on the 

OE62 dataset  when integrating 

various GNNs into Neural P3M

• Enhancement and Versatility.

Combined with various models, 

Neural P3M shows a consistent 

improvement.

• Efficiency. Thanks to fast Fourier 

transformation, Neural P3M is 

faster than Ewald MP in most 

cases.



Thanks


	Default Section
	幻灯片 1: Neural P3M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs 
	幻灯片 2: Background – Introduction to Geometric GNNs
	幻灯片 3: Preliminary – Ewald Summation
	幻灯片 4: Preliminary – Ewald Summation
	幻灯片 5: Methods – Meshing up the Ewald Summation with the Trainable Version
	幻灯片 6: Methods – Overall Neural P3M framework architecture
	幻灯片 7: Experiments – MD22
	幻灯片 8: Experiments – OE62
	幻灯片 9: Thanks


