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A Geometric View of Data Complexity:
Efficient Local Intrinsic Dimension Estimation with Diffusion Models



The Manifold Hypothesis

Data used in machine learning often lies on low-dimensional submanifolds of 
their ambient space [1]

(Definition) Local Intrinsic Dimension 𝐋𝐈𝐃 𝒙

The dimension of the submanifold datapoint 𝑥 belongs to
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Local Intrinsic Dimension: Relative Complexity
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Applications
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LID is useful for:

Detecting memorization [5]

Use a diffusion model trained on the data manifold, to extract the LID.

Detecting AI-generated content [3, 4]

Detecting out-of-distribution samples [2]
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Fokker-Planck LID
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𝑡 ∈ 0, 1 , d𝑋𝑡 = 𝒇 𝑿𝒕, 𝒕 d𝑡 + 𝐠 𝒕 d𝑊𝑡 

𝒑𝑿𝒕|𝑿𝟎
𝒙𝒕 𝒙𝟎 = 𝓝(𝒙𝒕; 𝝍 𝒕  𝒙𝟎, 𝝈𝟐 𝒕 ) 

ො𝒔𝜽 ⋅, 𝒕 ≈ 𝒔 ⋅, 𝒕 ≔ ∇ log 𝒑(⋅, 𝒕)

𝐋𝐈𝐃 𝒙; 𝜹  ≔ 𝐷 + 𝝈𝟐(𝒕(𝜹)) 𝐭𝐫 𝛁 ො𝒔𝜽 𝝍 𝒕 𝜹 𝒙, 𝒕 𝜹 + ‖ො𝒔𝜽 𝝍 𝒕 𝜹 𝒙, 𝒕 𝜹 ‖𝟐
𝟐

The forward process:

The transition kernel:

Diffusion learns the score [6]:

Use Hutchinson with a few JVPs!𝐋𝐈𝐃 𝒙 =  lim
𝜹→−∞

𝐋𝐈𝐃 𝒙; 𝜹
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LID of LAION Images
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A single JVP on Stable Diffusion yields data complexity on ~1 million dimensional images.

Smallest LIDs

Largest LIDs
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LID for Synthetic Data
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Summary
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Our LID estimator

qualitatively extracts data complexity with a pre-trained model✓

correlates strongly with PNG Compression size✓

is theoretically grounded✓

achieves SOTA on synthetic data✓

is the first to scale to extremely high dimensions ✓

is differentiable by design.✓
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