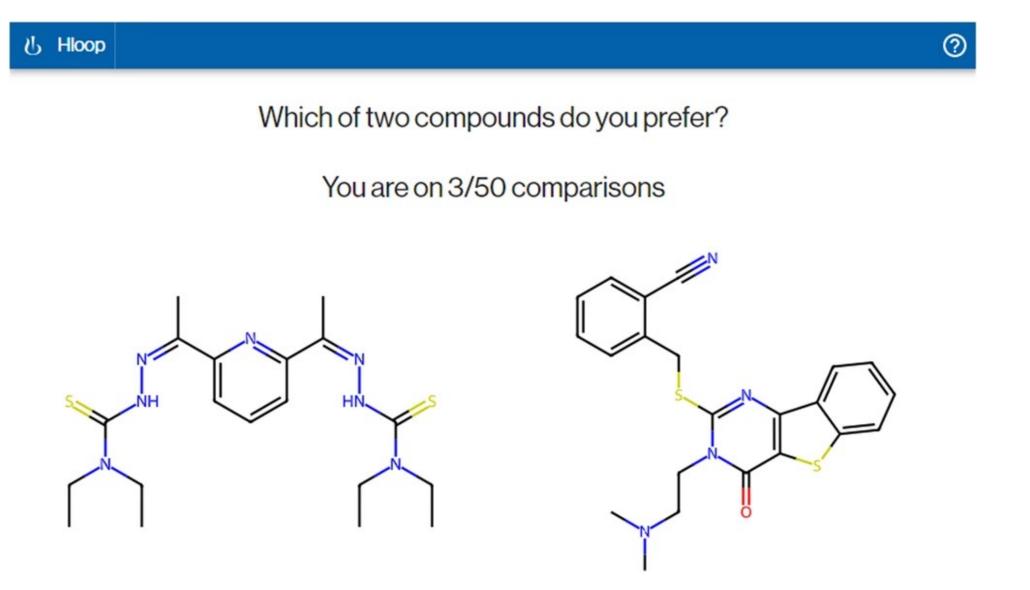
Preference Learning of Latent **Decision Utilities with a Human-like** Model of Preferential Choice

Sebastiaan De Peuter Andrew Howes

Shibei Zhu Yujia Guo Samuel Kaski

Learning from Preferences



Reproduced from: Choung, Oh-Hyeon, et al. "Extracting medicinal chemistry intuition via preference machine learning." Nature Communications 14.1 (2023): 6651.

- Infer a latent utility function f_w over options x_i from human stated preferences.
 - (Graphics) Material Design [Brochu et al., NeurIPS 2007]
 - Reinforcement Learning [Christiano et al., NeurIPS 2017]
 - Small Drug Molecules [Choung et al., Nature Communications 2023]
 - LLM Question answering [Ouyang et al., NeurIPS 2022]
 - Text Summarisation [Stiennon et al., NeurIPS 2020]
 - Image Generation [Xu et al., NeurIPS 2024]

Choice modelling Prior work

Binary Choice Model

Bradley-Terry

p()

Challenge: human biases incl. context effects

Model

$$p(y = x_1 | x_1, x_2) = \sigma \left(f_w(x_1) - f_w(x_2) \right)$$

$$y = x_i | x_1, \dots, x_n) \propto \exp \left(\beta f_w(x_i) \right)$$

Choice modelling Context effects

Contextual preference reversal: a change in preference between two options due to a change in further options.

Howes, Andrew, et al. "Why contextual preference reversals maximize expected value." Psychological review 123.4 (2016): 368. Wollschlaeger, Lena M., and Adele Diederich. "Similarity, attraction, and compromise effects: Original findings, recent empirical observations, and computational cognitive process models." The American Journal of Psychology 133.1 (2020): 1-30.

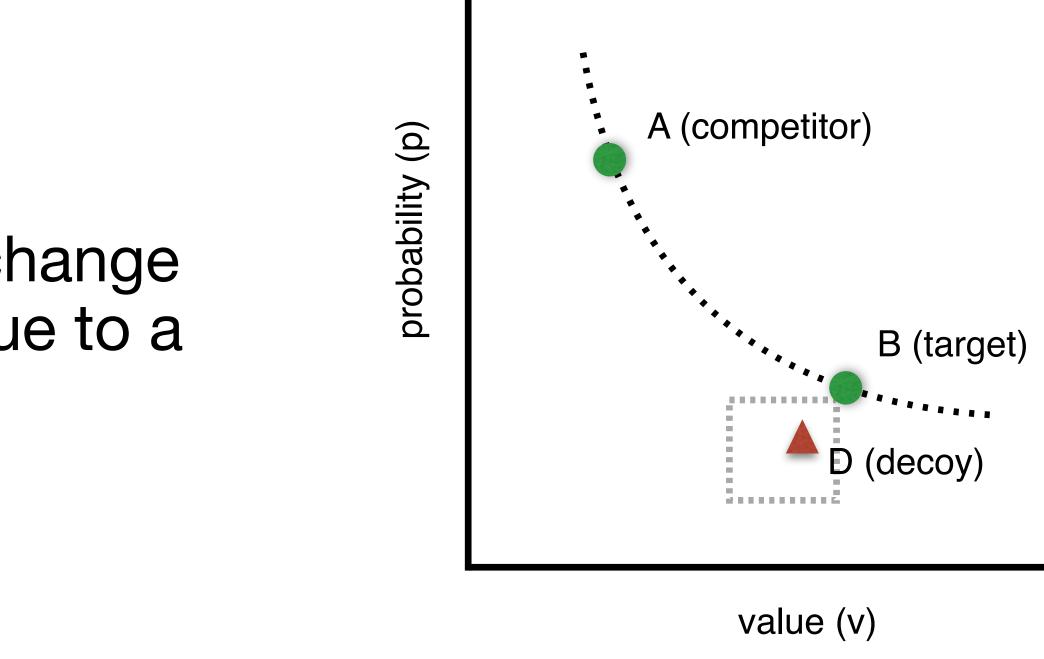


Figure: Attraction effect

Choice modelling Prior work

p					
<i>p</i> (y =					
Challenge: human bi					
<i>p</i> (y =					
<i>p</i> (y =					

Model

$$p(y = x_1 | x_1, x_2) = \sigma \left(f_w(x_1) - f_w(x_2) \right)$$

$$y = x_i | x_1, \dots, x_n) \propto \exp \left(\beta f_w(x_i) \right)$$

piases incl. context effects

$$y = x_i | x_1, \dots, x_n) \propto \exp\left(w^T x_i^{\tau(C)}\right)$$

$$y = x_i | x_1, \dots, x_n) \propto \exp\left((w + A x_C)^T x_i\right)$$

Computationally rational

Contributions

- 2. Introduce **CRCS**, a surrogate of an existing cognitive choice model that allows for **practical inference**
- 3. Extend CRCS into LC-CRCS, which can learn cross-feature effects between options.

1. Show that **computational rationality** theory can **improve inference** from and prediction of human behavior, specifically for learning from preferences.

Computationally Rational Choice Surrogate

A computationally rational choice model The original cognitive model

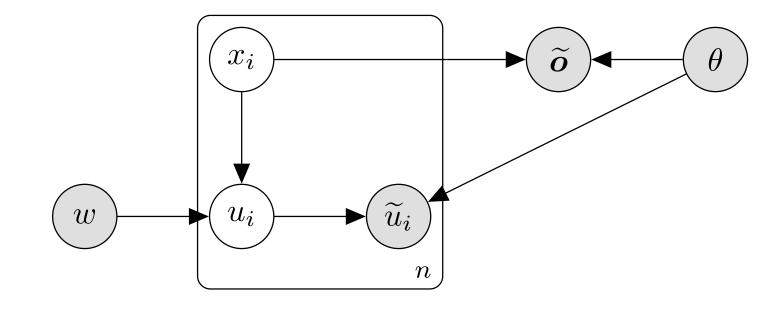
Choices are utility-maximizing under observational bounds. [Howes et al. 2016]

Options not directly observable. Instead, noisy observations:

- \widetilde{u} : noisy utility value
- \widetilde{o} : noisy pairwise attribute value comparisons

$$y = \operatorname{argmax}_{x_i \in \{x_1, \dots, x_n\}} \mathbb{E}[u_i | \widetilde{u}, \widetilde{o}, w, \theta]$$

Howes, Andrew, et al. "Why contextual preference reversals maximize expected value." Psychological review 123.4 (2016): 368.



A computationally rational choice model Making it tractable

 $y = \operatorname{argmax}_{x_i \in \{x\}}$

Surrogate trained to predict expected utility of options:

 $\mathscr{L}_{\text{util}}(\widehat{u}) = \mathbb{E}_{p(w,\theta,u,\widetilde{u},\widetilde{o})} \left[\|\widehat{u}(\widetilde{u},\widetilde{o},w,\theta) - u\|_2 \right]$

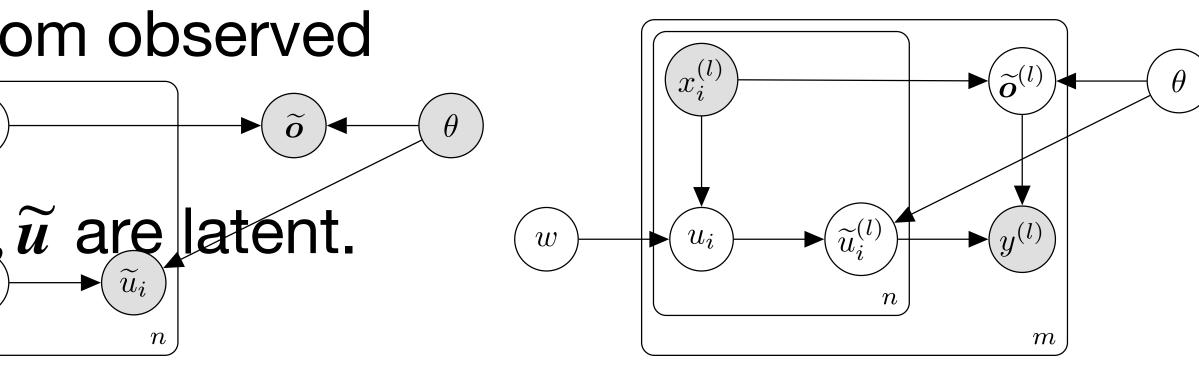
$$\{x_1,\ldots,x_n\} \mathbb{E}[u_i | \widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{o}}, w, \theta]$$

Tractable Preference learning with CRCS

Outside observer infers parameters from observed choices. $(x_i) \rightarrow (\tilde{o}) \rightarrow (\tilde{o})$

But, associated noisy observations $\widetilde{o}, \widetilde{u}$ are latent.

$$\mathscr{L}_{\mathsf{pol}}(\widehat{q}) = \mathbb{E}_{p(w,\theta, \mathbf{x}, \widetilde{u}, \widetilde{o})} \left[-\ln \widehat{q} \left(\operatorname{argmax}_{\{x_1, \dots, x_n\}} \widehat{u}(\widetilde{u}, \widetilde{o}, w, \theta) \, \middle| \, \mathbf{x}, w, \theta \right) \right]$$



LC-CRCS

LCL can learn cross-feature effects through Ax_C

LC-CRCS introduces the same mechanism in CRCS

CRCS

- $\exp\left((w + Ax_C)^T x_i\right)$

 $\widehat{q}\left(y|\boldsymbol{x},w,\theta\right)$ $\widehat{q}\left(y|\boldsymbol{x},w+A\boldsymbol{x_{C}},\theta\right)$

LC-CRCS

Experiments

Inference and Choice Prediction

LC-CRCS is a better predictor of real human choices

Table 1: Choice model NLLs on human choice data sets. Bolded digits indicate a significant (p < 0.01) improvement over baselines (BT, BB, LCL).

Dataset	Bradley-Terry	Bower & Balzano	LCL	CRCS (ours)	LC-CRCS (ours)
Hotels	573	573	553	536	536
District-Smart	3432	3432	3305	3371	3276
Car-Alt	7414	7416	7290	7322	7345
Dumbalska	103669	103711	100683	100450	99147

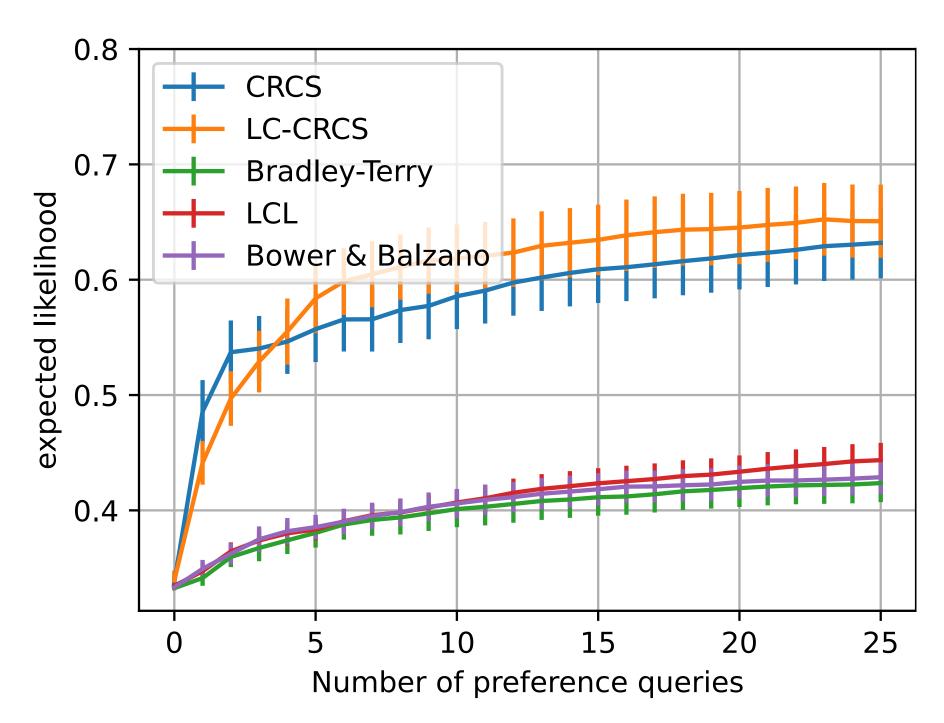
LC-CRCS and CRCS infer utility that better aligns with human preferences

Table 2: Consistency of inferred utility function with separately collected rankings on District-Smart. Bolded digits indicate a significant improvement over baselines (BT, BB, LCL).

Dataset	Bradley-Terry	Bower & Balzano	LCL	CRCS (ours)	LC-CRCS (ours)
District-Smart	0.162	0.217	0.286	0.622	0.525

Active Inference and Assistance

CRCS and LC-CRCS are more dataefficient in an active learning setting.



In-silico experiments show practicality of CRCS for real design problems:

- Structural design
- Drainage network design
- Retrosynthesis planning

Conclusion

- through strong inductive biases.
- Introduce CRCS, a computationally rational surrogate for human choice making which enables practical inference.
- Extend CRCS to LC-CRCS, which can learn additional cross-feature effects.
- Show experimentally that CRCS and LC-CRCS have significantly better utility inference and choice prediction compared to baselines.

Show that computational rationality can improve learning from preferences

