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Setup and Notations

Network Structure: We consider a fully-connected network with
weights initialized using a standard random Gaussian distribution. The
network structure is defined as follows:

α(1)(x) =

√
2

m1

(
W (0)x + b(0)

)
;

α(l)(x) =

√
2

ml
W (l−1)σ(α(l−1)(x)), l = 2, 3, . . . , L;

f (x ; θ) = W (L)σ(α(L)(x)),

(1)

Network Width and Initialization: The network width m satisfies the
following bounds:

cm ≤ min{ml : l = 0, 1, . . . , L} ≤ max{ml : l = 0, 1, . . . , L} ≤ Cm

for some positive constants c and C . The elements of matrices W and
vector b are all initialized as standard Gaussian random variables.



Setup and Notations

Distribution of data: For sample pairs {(xi , yi )}i=1,··· ,n, we
assume that they follows:

yi = f ∗(xi ) + ϵi , (2)

where f ∗ is the real function and {ϵi} are the noise terms. The
assumption on f ∗ and {ϵi} will be stated later.
Training Procedure: Given training samples {(xi , yi )}i=1,...,n,
where x ∈ X ⊂ Rd and X is a domain with smooth boundary, the
network is trained under a Mean Squared Error (MSE) loss
function through gradient flow:

L(θ) =
1

2n

n∑
i=1

(f (xi ; θ)− yi )
2



Motivation

When the network is wide enough, we observe that the L-2
generalization error relationship between Mirrored Initialization
and Standard Initialization is:

∥f NN
t − f ∗∥2L2 ≈ ∥f NN,(0)t − (f ∗ − f NN0 )∥2L2

▶ f NNt : Network trained from f NN0 (Standard fully-connected
initialization) at time t.

▶ f
NN,(0)
t : Network trained from initial output 0 (Mirrored
fully-connected initialization) at time t.

▶ f ∗: goal function of the regression problem.

It shows that the non-zero output works as introducing an implicit
bias in the training process.



Motivation (Continued)

Figure: Mirrored fully-connected initialization, with initial output f ≡ 0.



Neural Tangent Kernel Theory

The Gradient Flow (GF) of the network is:

d

dt
f NN
t (x) = −1

n

n∑
i=1

⟨∇θf
NN
t (x),∇θf

NN
t (xi )⟩(f (xi )− yi ).

When network is wide enough (m → ∞), it falls into the NTK
regime [1, 2]:

lim
m→∞

⟨∇θf
NN
t (x),∇θf

NN
t (x ′)⟩ → KNTK(x , x ′)

In this way, the GF of network can be approximated by KGF
(Kernel Gradient Flow):

d

dt
f NTK
t (x) =

1

n

n∑
i=1

KNTK(x , xi )(f
NTK
t (xi )− yi )



Methods

The generalization ability of KGF predictor depends on the
smoothness of the regression function. Denote by H the RKHS of
kernel k(·, ·). For f ∗ ∈ [H]s :

▶ The generalization error of KGF is about Θ(n−
β

d+1 ), where β
is the EDR (eigenvalue decay rate) of kernel k(·, ·):

λi (k) ≍ i−β. (3)

Especially, the EDR of NTK is d+1
d .



Key Intuition

Key point: Calculate the Smoothness of the Implicit Bias Caused
by Initial Output Function
The revised goal function f ∗∗ converges to a GP (Gaussian Process):

f ∗∗ = f ∗ − f NN0 ⇒ f ∗ − f GP ∼ GP(f ∗,KRF)

If f ∗ is smooth, the smoothness of f ∗∗ depends on the smoothness of
f GP. Denote by HNTK the RKHS with respect to NTK. Our results
shows that (Theorem 4.2)

P(f GP ∈ [HNTK]s) = 0, s ≥ 3

d + 1

P(f GP ∈ [HNTK]s) = 1, s <
3

d + 1

In this way, we can directly derive the generalization error of the KGF
predictor, as well as the network when width m is large enough.



Main Results

Generalization Ability of Network under Different
Initialization
1. Assumption 1: Source condition (Smoothness of goal function)
f ∗ ∈ [HNTK]s , where s ≥ 3

d+1 .
2. Assumption 2: Noise The training samples {(xi , yi )}ni=1 are
generated by yi = f ∗(xi ) + ϵi where the noise term ϵ satisfies the
following condition:

E[(|ϵ|m|x ] ≤ 1

2
mσ2Lm−2, a.e.x ∈ X

for some constant σ, L,m, n ≥ 2.



Main Results (Continued)

Results on Generalization Ability:

▶ Mirrored Initialization (Existing Result)[3]:

∥f NNt − f ∗∥2L2 ≤ O(n
− s(d+1)

s(d+1)+d )

▶ Standard Initialization (Theorem 4.3, 4.4):

∥f NNt − f ∗∥2L2 ≈ Θ(n−
3

d+3 )

When the smoothness s is close to 1 (a common assumption), the

generalization error of mirrored initialization is approximately n−
1
2

and is shown to be minimax optimal. However, in contrast, the
generalization error of commonly used standard initialization

scales as n−
3

d+3 , highlighting the so-called Curse of Dimensionality.



Comparison of Mirrored Initialization and Standard
Initialization

We train wide networks under mirrored initialization and
standard initialization with a smooth goal function and under
different sample sizes n. The figure compares the MSE
generalization error of the two initialization methods across varying
n values.

Figure: Comparison plot of generalization error.



Smoothness of Real Datasets

We evaluate the smoothness of different real-world datasets by
calculating the smoothness of their goal functions.
With the input dimension d = 784, 3072, 784, the smoothness of
initialization function is equal to 3

d+1 ≈ 0. However, the

smoothness of real datasets is far better than 3
d+1 , which implies

that standard initialization will indeed destroy the
generalization performance.

Dataset Dimension Smoothness

MNIST 28 × 28 × 1 0.40
CIFAR-10 32 × 32 × 3 0.09
Fashion-MNIST 28 × 28 × 1 0.22

Table: Smoothness of goal functions for popular datasets.



Conclusion

Summary of Findings

▶ This study highlights the importance of initialization
techniques in neural networks and their effects on
generalization abilities, especially the superiority of mirrored
initialization over standard initialization.

▶ Under NTK theory, the learning rate n−
3

d+3 with standard
initialization performs so poorly that we have reason to
believe NTK theory cannot fully explain the superior
performance of neural networks.

Thank you!
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