Enhancing Motion in Text-to-Video Generation with Decomposed Encoding and Conditioning

Penghui Ruan^{1,2}, Pichao Wang³, Divya Saxena¹, Jiannong Cao¹, Yuhui Shi²

¹The Hong Kong Polytechnic University

²Southern University of Science and Technology

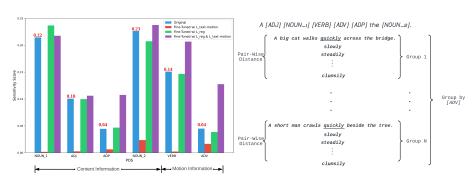
³Amazon

Accepted at NeurIPS 2024

November 11, 2024

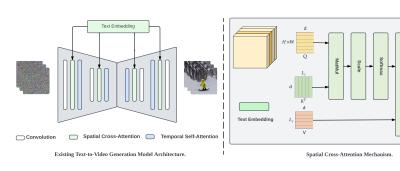
Motivation

• We observed that current text-to-video generation models struggle with accurately understanding and generating motions.

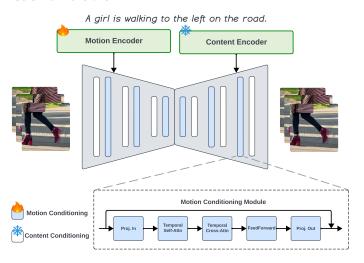

A man is practicing Taichi.

A goat is climbing the mountain.

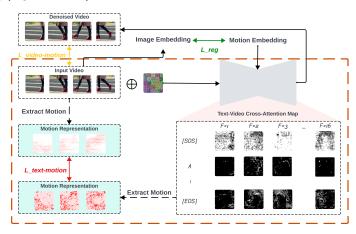
Two men are wrestling.


Insufficient Text Encoding

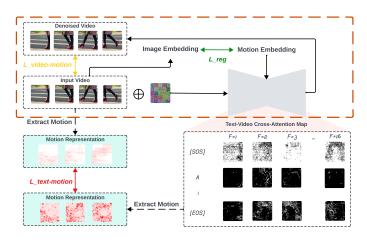
 The text encoding is significantly biased towards nouns and objects, with insufficient consideration of motion information.


Insufficient Text Conditioning

 Current text conditioning mechanisms operate only in the spatial dimension, whereas motion is an essential element intertwined with both space and time.


Purposed Solution: DEcomposed MOtion (DEMO)

 Decompose the text encoding and text conditioning into separated content and motion dimensions.


Purposed Solution

• Enhance the text encoding with $\mathcal{L}_{text-motion}$ (text-motion supervision) and \mathcal{L}_{reg} (regularization).

Purposed Solution

• Enhance the motion generation with $\mathcal{L}_{\text{video-motion}}$ (video-motion supervision).

Results of Quantitative Evaluation

Table 1: Results of zero-shot T2V generation on MSR- Table 2: Results of zero-shot T2V genera-VTT (Evaluation protocol comparison can be found in the appendix).

tion on UCF-101 (Evaluation protocol comparison can be found in the appendix).

Model	$FID(\downarrow)$	$FVD(\downarrow)$	CLIPSIM (†)	Model	IS (†)	FVD (↓)
MagicVideo [74]	-	1290	-	MagicVideo [74]	-	655.00
Make-A-Video [46]	13.17	-	0.3049	Make-A-Video [46]	33.00	367.23
Show-1 [70]	13.08	538	0.3072	Show-1 [70]	35.42	394.46
Video LDM [4]	-	-	0.2929	Video LDM [4]	33.45	550.61
LaVie [59]	-	-	0.2949	LaVie [59]	-	526.30
PYoCo [14]	10.21-9.73	-	-	PYoCo [14]	47.76	355.19
VideoFactory [58]	-	-	0.3005	VideoFactory [58]	_	410.00
EMU VIDEO [45]	-	-	-	EMU VIDEO [45]	42.70	606.20
SVD [3]	-	-	-	SVD [3]	-	242.02
ModelScopeT2V ³ [56]	14.89	557	0.2941	ModelScopeT2V [56]	37.55	628.17
ModelScopeT2V fine-tuned	13.80	536	0.2932	ModelScopeT2V fine-tuned	37.21	612.53
DEMO	11.77	422	0.2965	DEMO	36.35	547.31

Table 3: Results of T2V generation on WebVid-10M (Val).

Model	FID (↓)	FVD (↓)	CLIPSIM (↑)
ModelScopeT2V	11.14	508	0.2986
ModelScopeT2V fine-tuned	10.53	461	0.2952
DEMO	9.86	351	0.3083

Results of Quantitative Evaluation

Table 4: Results of zero-shot T2V generation on EvalCrafter.

Model	Video Quality			Motion Quality		
	$VQA_A (\uparrow)$	$VQA_T (\uparrow)$	IS (†)	Action Score (†)	Motion AC-Score (↑)	Flow Score (†)
ModelScopeT2V	15.12	16.88	14.60	75.88	44	2.51
ModelScopeT2V fine-tuned	15.89	16.39	14.92	74.23	40	2.72
DEMO w/o Lvideo-motion	18.78	15.12	17.13	76.20	48	3.11
DEMO	19.28	15.65	17.57	78.22	58	4.89

Table 5: Results of zero-shot T2V generation on VBench.

Model	Motion Dynamics (†)	Human Action (↑)	Temporal Flickering (†)	Motion Smoothness(†)
ModelScopeT2V	62.50	90.40	96.02	96.19
ModelScopeT2V fine-tuned	63.75	90.40	96.35	96.38
DEMO	68.90	90.60	94.63	96.09

Results of Qualitative Evaluation

ModelScopeT2V LaVie VideoCrafter2 DEMO

Slow motion flower petals fall from a blossom, landing softly on the ground.

ModelScopeT2V LaVie VideoCrafter2 DEMO

An old man with white hair is shown speaking.

Thank You

Paper, code, and model are available at https://pr-ryan.github.io/DEMO-project/

THANKS FOR YOUR ATTENTION.