

Samueli Computer Science

Non-Euclidean Mixture Model for Social Network Embedding

Roshni G. Iyer

Yewen Wang

Wei Wang

Yizhou Sun

Introduction and Preliminaries

- Social networks are omnipresent because they model interactions on social platforms
- Social network analysis is key to community detection, user connectivity etc.
- Widely agreed that social network links are formed from homophily or social influence
- Homophily: associated nodes imply feature similarity (form cycles)
- Social Influence: popular nodes have direct influence in forming links (form hierarchies)

Social Network Embedding Models

Observations:

- Shallow embedding models (structural embedding) do not effectively learn graph structure (limited to attributes)
- Models do not capture all social network factors e.g., social influence
- All network structures are modeled in same space e.g., flat Euclidean space

Category	Description				
Structural Embedding Models	GraRep [Cao <i>et al.</i> , 2015], shallow embedding integrating global structural information				
	RolX [Henderson <i>et al.</i> , 2012], unsupervised learning approach using structural role based similarity				
	GraphWave [Donnat <i>et al.</i> , 2018], shallow embedding model using spectral graph wavelet diffusion patterns				
GNN Embedding Models (Euclidean space)	GraphSAGE [Hamilton <i>et al.</i> , 2017], inductive framework using node features and neighbor aggregation				
	GCN [Kipf and Welling, 2017], semi-supervised learning model via graph convolution on local neighborhoods				
	GAT [Veličković <i>et al.</i> , 2018], graph attention model using mask self-attention layers on local neighborhoods				
Homophily-based Embedding Models	GELTOR [Hamedani <i>et al.</i> , 2023], embedding method using learning-to-rank with AdaSim* similarity metric				
	NRP [Yang <i>et al.</i> , 2020], embedding model using pairwise personalized PageRank on the global graph				
GNN Embedding Models (non-Euclidean space)	HGCN [Chami <i>et al.</i> , 2019], hyperbolic GCN model utilizing Riemannian geometry and hyperboloid model				
	κ -GCN [Bachmann <i>et al.</i> , 2020], GCN model using product space e.g., product of constant curvature spaces				
Mixture Models (homophily and social influence)	RaRE [Gu <i>et al.</i> , 2018], Bayesian probabilistic model for node proximity/popularity via posterior estimation				
	NMM, our non-Euclidean mixture model (see Eqn. 9), without use of GraphVAE framework				
	NMM-GNN, our non-Euclidean mixture model with non-Euclidean GraphVAE framework				

SOTA baseline models

Motivation and Problem Definition

- A social network G = (V, A) consists of vertices $V = \{v_i\}_{i=1}^N$, and adjacency matrix $e_{ii} \in A$
- We aim to design a model to jointly learn both node homophily and social influence representation, denoted z_i^S and z_i^H respectively, that can best explain the social network for link reconstruction.

Encoder and Prior Distributions

 The encoder maps nodes into z^S (homophily) and z^H (social influence), which follow non-Euclidean prior distributions.

Decoder: Non-Euclidean Mixture Model

- Embeddings are passed into our mixture model decoder (homophily + social influence).
- Objective: maximize likelihood to observe links (= minimize link reconstruction loss).

Space Unification

- We design space unification component to align distinct geometric spaces
 - Ensures two embeddings of same node correspond to each other
 - \boldsymbol{z}_i^H in the Poincaré ball is projected on the surface of the sphere and its distance to \boldsymbol{z}_i^S is minimized

Space unification architecture

Dataset Statistics

Table 1:	Dataset	statistics	for eva	luation	datasets.
----------	---------	------------	---------	---------	-----------

Dataset	# Vertices	# Edges	Туре	# Classes
BlogCatalog	10.3K	334.0K	undirected	39
LiveJournal	4.8M	69.0M	directed	10
Friendster	65.6M	1.8B	undirected	_

Experiment Evaluation: 90% of links randomly sampled as training. Do not perform cross-validation as it may cause overfitting of learnable parameters: z_S, z_H, J, B, C, D, γ, W_I.

Evaluation: Classification & Link Prediction

Table 3: Results of social network classification and link prediction for **Jaccard Index** (%), **Hamming Loss** (%), **F1 Score** (%), **AUC** (%) using embedding dimension 64. Our **NMM** and its variants are in gray shading. For each group of models, the best results are bold-faced. The overall best results on each dataset are underscored. [†]Ablation study variant models using distinct non-Euclidean geometric spaces for **NMM** (homophily/social influence) where \mathbb{E} , \mathbb{S} , and \mathbb{H} denote Euclidean, Spherical, and Hyperbolic spaces.

Datasets	BlogCatalog			LiveJournal			Friendster					
Metrics	Jaccard Index	Hamming Loss	F1 Score	AUC	Jaccard Index	Hamming Loss	F1 Score	AUC	Jaccard Index	Hamming Loss	F1 Score	AUC
GraRep	36.0	28.2	45.6	87.9	40.1	41.1	35.2	56.7	53.6	34.2	40.6	89.8
RolX	37.2	25.4	48.7	90.4	40.9	38.0	35.6	60.1	58.8	33.9	40.9	90.3
GraphWave	39.5	22.8	48.9	92.3	42.2	37.6	35.9	60.1	59.0	31.5	41.1	90.5
GraphSAGE	45.4	20.1	49.3	92.0	45.5	34.7	34.1	59.0	64.1	28.7	43.4	90.5
GCN	47.3	19.5	55.1	91.6	46.7	31.2	47.8	62.6	66.5	28.0	47.2	91.9
GAT	47.9	19.3	54.5	91.4	47.4	28.5	49.0	65.3	66.3	28.0	46.8	92.0
GELTOR	47.4	19.3	54.9	92.0	51.0	28.9	48.6	65.3	66.7	27.9	47.5	91.7
NRP	61.6	20.4	65.2	95.5	69.7	24.5	64.0	78.7	72.2	22.6	52.8	92.2
HGCN	56.7	19.2	60.9	92.7	58.8	27.1	57.7	68.5	69.9	24.3	49.9	93.3
κ-GCN	61.6	20.7	65.4	95.3	63.6	27.3	57.2	69.1	69.4	24.1	50.3	93.1
RaRE	61.4	20.6	65.6	95.1	74.2	23.8	65.1	79.9	75.7	22.5	55.0	94.4
$NMM(\mathbb{H}^d/\mathbb{S}^d)^\dagger$	56.6	19.8	62.3	95.1	74.0	28.4	55.5	68.8	74.6	26.9	50.6	93.0
$\mathrm{NMM}(\mathbb{S}^d/\mathbb{S}^d)^\dagger$	57.1	19.6	65.9	94.0	74.7	27.6	57.1	69.0	75.3	26.2	52.5	93.4
$NMM(\mathbb{E}^d/\mathbb{E}^d)^\dagger$	57.9	19.5	66.3	95.4	75.1	25.0	58.4	71.2	77.0	24.7	52.8	94.5
$\mathrm{NMM}(\mathbb{S}^d/\mathbb{E}^d)^\dagger$	59.2	19.2	67.1	95.5	75.3	24.4	59.3	74.5	77.5	23.3	54.3	94.5
$\mathrm{NMM}(\mathbb{H}^d/\mathbb{H}^d)^\dagger$	58.4	19.0	66.7	95.3	75.6	24.6	61.9	76.0	78.8	23.3	55.0	94.7
$\mathrm{NMM}(\mathbb{E}^d/\mathbb{H}^d)^{\dagger}$	60.3	19.1	67.8	95.7	76.2	23.2	64.4	79.2	79.1	22.6	55.4	94.5
NMM (ours)	62.7	19.0	70.9	95.8	76.5	22.7	67.3	84.2	79.8	22.1	56.3	94.8
NMM-GNN (ours)	62.6	<u>17.3</u>	<u>78.8</u>	<u>96.9</u>	<u>78.6</u>	<u>20.4</u>	67.3	<u>86.8</u>	<u>83.3</u>	<u>21.8</u>	57.7	<u>94.9</u>

- Modeling for both social network factors jointly achieves superior performance
- Homophily is best modeled in spherical space and social influence is best modeled in hyperbolic space
 UCLA Samu Computers

Additional Ablation Studies

- **NMM**_{hom}: $p_{\theta}(e_{ij} = 1) = \alpha \cdot p_{hom}(e_{ij} = 1)$ **NMM**_{rank}: $p_{\theta}(e_{ij} = 1) = \beta \cdot p_{rank}(e_{ij} = 1)$ **NMM**: our mixed distribution model

On embedding dimension 64 for AUC score

- **NMM-GNN** and **RaRE** on *LiveJournal* •
- As less training nodes are observed, • NMM-GNN outperforms RaRE by larger margins (e.g., 10% vs. 70% training nodes) better generalization to unseen graphs Ο

NMM-GNN Contributions

- (1) We propose Graph-based Non-Euclidean Mixture Model (NMM) to explain social network generation. NMM represents nodes via joint influence by homophily (spherical space) and social influence (hyperbolic space), with space alignment component.
- (2) The first to couple NMM with graph-based VAE learning framework, NMM-GNN.
 - (a) We introduce a novel non-Euclidean VAE framework where node embeddings are learned with a powerful encoder of GNNs using spherical and hyperbolic spaces, non-Euclidean Gaussian priors, and unified non-Euclidean optimization.

