

3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction

Jongmin Lee*

Minsu Cho

Introduction: Single-View Pose Estimation

Pipeline of object pose estimation

Introduction: Single-View Pose Estimation

End-to-end pose estimation networks

Motivation

- Problems of existing 3D rotation representations in spatial domain^{1,2,3}
 - Discontinuity (Euler, Quaternions) & Singularity (3D rotmats)
- Our solution
 - Parametrizes the 3D rotation in frequency domain
 - Predicting Wigner-D matrices of spherical harmonics
 - Leverages **SO(3) equivariance** for generalization to unseen rotations
 - Using **spherical CNNs** operating in frequency domain

- 1. Learning with 3d rotations, a hitchhiker's guide to SO(3). (Rene Geist et al., ICML 2024)
- 2. On the continuity of rotation representations in neural networks. (Zhou et al., CVPR 2019)
- 3. Learning rotations. (Pepe et al., Applied mathematics 2024)

*Wigner-D matrix: rotation of spherical harmonics

Motivation: Problem & Solution

Preliminary: Why Equivariance?

- Existing AI systems are not generalizable to **unseen spatial context**.
 - It depends on large-scale training data, with strong data augmentation.
 - Memorize the samples in training time!

Equivariant Model

- Existing AI systems are not generalizable to **unseen spatial context**.
 - It depends on large-scale training data, with strong data augmentation.
 - Memorize the samples in training time!
- Equivariant networks can generalize unseen geometric transformations!
 - It can reduce the # of training data, without data augmentation.

Preliminary: Spherical CNNs for SO(3)-Equivariance

- Spherical convolution neural networks [1, 2, 3, 4, 5, 6]
 - Compute cross-correlation on **frequency domain for efficiency**, by FFT
 - Guarantee SO(3)-equivariance: reducing the # of training data, **improving data efficiency**
 - Obtain reliable spherical representation in pose space

Example of SO(3) equivariant CNNs²

- 1. Spherical CNNs (Cohen et al., ICLR 2018)
- 2. Learning SO(3) Equivariant Representations with Spherical CNNs (Esteve et al., ECCV 2018)
- 3. DeepSphere: a graph-based spherical CNN (Defferrard et al., ICLR 2020)
- 4. Equivariant Networks for Pixelized Spheres (Shakerinava and Ravanbakhsh, ICML 2021)
- 5. Clebsch-Gordan Nets: A Fully Fourier Space Spherical CNN (Kondor et al., NIPS 2018)
- 6. Efficient Generalized Spherical CNNs (Cobb et al., ICLR 2021)

- SO(3)-Equivariant Pose Harmonics Estimation Network¹
 - Feature extractor: ResNet with ImageNet pretrained weights
 - Spherical mapper: Orthographic projection from 2D image to (hemi-)sphere
 - Fourier transformer: Fast Fourier Transform
 - SO(3)-equivariant convolution layers: Spherical CNNs
- Loss function
 - Frequency-domain specific MSE Loss

$$\mathcal{L}(\hat{\Psi}, \Psi^{\text{GT}}) = \sum_{l=0}^{L} \sum_{m=-l}^{l} w_l (\hat{\Psi}_{lm} - \Psi_{lm}^{\text{GT}})^2,$$

1. Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction (Klee et al., ICLR 2023) 8

Spherical Mapper, Spherical Convolution for SO(3)-Equivariance

Spherical mapper by orthographic projection¹

Spherical convolution for SO(3)-equivariance

- Spherical mapper: orthographic projection to lift 2D image feature on sphere
- SO(3)-equivariant convolution layers: S^2 -conv and SO(3)-conv in Spherical CNNs²
- The output Ψ is **Wigner-D matrix coefficients**, which represents 3D rotation in frequency domain.

Image to sphere: Learning equivariant features for efficient pose prediction (Klee et al., ICLR 2023)
Spherical CNNs (Cohen et al., ICLR 2018)
*Figure courtesy: Image2Sphere paper, github visualization: https://github.com/dmklee/image2sphere

Loss Function

Method

- Frequency-domain regression loss
 - The output Ψ indicates **specific object orientations in an image**.
 - We calculate the MSE by **normalizing each harmonic frequency level** *l* with *w*_{*l*}.
 - This regression loss allows for **continuous output values**.
 - More precise predictions of unambiguous object poses than previous discretization methods.

Inference: Converting Wigner-D coefficients to 3D rotation matrix

- Convert the Wigner-D prediction to 3D rotation matrices, inspired by ^{1,2}.
 - Producing **non-parametric probability distribution** by computing similarity between Ψ and P_{freq} .
 - With pre-defined SO(3) mapping grid $(P_{\text{freq}}(\cdot | I) \rightarrow P_{\text{spat}}(\cdot | I))$.
- Possible to modeling uncertainty from pose ambiguity and 3D symmetry with distribution loss^{1,2}.

1. Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold (Murphy et al., ICML 2021)

2. Image to sphere: Learning equivariant features for efficient pose prediction (Klee et al., ICLR 2023) 11

Results: Comparison with Existing Methods

Method	Acc@15 Acc@30 Rot Err. (Median)			Method	Acc@30	Rot Err. (Median)	
Zhou et al., (CVPR 2019)	0.251	0.504	41.1	Zhou <i>et al.</i> , (CVPR 2019)	-	19.2°	
Breiger (3DV 2021)	0.257	0.515	39.9	Breiger (3DV 2021)	-	20.0°	
Liao <i>et al.</i> (CVPR 2019)	0.357	0.583	36.5	Liao et al. (CVPR 2019)	0.819	13.0°	
Deng et al., (ECCV 2020, IJCV 2022)	0.562	0.694	32.6	Prokudin et al. (ECCV 2018)	0.838	12.2°	
Prokudin et al. (ECCV 2018)	0.456	0.528	49.3	Mohlin <i>et al.</i> (NeurIPS 2020)	0.825	11.5°	
Mohlin et al. (NeurIPS 2020)	0.693	0.757	17.1	Tulsiani & Malik (CVPR 2015)	-	13.6°	
Murphy et al., (ICML 2021)	0.719	0.735	21.5	Mahendran <i>et al.</i> (BMVC 2018)	_	10.1°	
Yin et al., (CVPR 2022)	-	0.751	16.1	× ,		10.1° 10.3°	
Yin et al., (ICLR 2023)	0.742	0.772	12.7	Murphy <i>et al.</i> , (ICML 2021)	0.837		
Klee et al., (ICLR 2023)	0.728	0.736	15.7	Yin et al., (ICLR 2023)	-	9.4°	
Liu et al., (Uni) (CVPR 2023)	0.76	0.774	14.6	Klee <i>et al.</i> , (ICLR 2023)	0.872	9.8°	
Liu et al., (Fisher) (CVPR 2023)	0.744	0.768	12.2	Liu et al., (Uni) (CVPR 2023)	0.827	10.2°	
Howell et al., (NeurIPS 2023)	-	-	17.8	Liu et al., (Fisher) (CVPR 2023)	0.863	9.9°	
ours (ResNet-50)	0.759	0.767	15.1	Howell et al., (NeurIPS 2023)	-	9.2°	
ours (ResNet-101)	0.773	0.780	11.9	Ours	0.897	8.9 °	

Results on ModelNet10-SO(3).

Results on PASCAL3D+.

 Our model achieve state-of-the-art performance on standard single-view SO(3) pose estimation benchmarks.

Results: Few-shot Training for Sampling efficiency

- Our model consistently obtains best scores by reducing the # of training data.
 - Our SO(3)-equivariant network contributes data sampling efficiency.

• On the Continuity of Rotation Representations in Neural Networks (Zhou et al., CVPR 2019)

- Deep Regression on Manifolds: A 3D Rotation Case Study (Brégier, 3DV 2021)
- Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold (Murphy et al., ICML 2021)
 - Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction (Klee et al., ICLR 2023)
 - RotationLaplace: A Laplace-inspired Distribution on SO(3) for Probabilistic Rotation Estimation (Yin et al., ICLR 2023) ¹³

Results: Validation of Design Choices

Method	Acc@15	Acc@30	Rot Err.	
Wigner (ours)	0.6807	0.6956	22.27 °	
Euler	0.0010	0.0072	132.56°	
Quaternion	0.0510	0.1629	75.95°	
Axis-Angle	0.0124	0.0815	88.66°	
Rotmat	0.3909	0.5682	37.54°	
w.o eauivConv	0.1056	0.1308	149.25°	

Loss Function	Acc@15°	Acc@30°	Rot Err.
MSE Loss	0.6807	0.6956	22.27°
L1 loss	0.6796	0.6933	22.12°
Huber loss	0.6710	0.6873	19.26°
Cosine loss	0.4414	0.4978	64.29°
Geodesic loss	0.0009	0.0071	132.65°

Comparison of different loss functions.

Comparison of **different rotation parametrizations** & w/o SO(3)-equivariant convolution.

- (Left) Rotation parametrization in the frequency domain facilitates accurate 3D rotation prediction.
- (Left) SO(3)-equivariant modules using spherical CNNs are critical for **effective generalization**.
- (Right) MSE loss demonstrates optimal performance with a simple yet effective approach.

Results: Pose Visualization

Results of Pascal3D+.

• Our method captures a sharp modality of the pose distribution in well-defined poses.

• Our method encounters challenges with pose ambiguity caused by object symmetry.

Results of ModelNet10-SO(3).

1. Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold (Murphy et al., ICML 2021) 15

Results: Joint Training for Symmetric Objects

Results on SYMSOL I and II: with distribution loss $\mathcal{L}_{dist}{}^1$

	SYMSOL I				SYMSOL II					
	avg	cone	cyl	tet	cube	icosa	avg	sphereX	cylO	tetX
$\mathcal{L}_{ ext{wigner}}$	2.54	2.42	2.68	2.93	2.67	1.99	-8.88	<u>4.51</u>	-7.64	-23.52
\mathcal{L}_{wigner} \mathcal{L}_{dist} [35] $\mathcal{L}_{wigner} + \mathcal{L}_{dist}$	<u>3.41</u> 4.11	<u>3.75</u> 4.43	<u>3.10</u> 3.76	<u>4.78</u> 5.59	<u>3.27</u> 3.93	<u>2.15</u> 2.85	<u>4.84</u> 6.20	3.74 6.66	<u>5.18</u> 5.85	<u>5.61</u> 6.11

1. Implicit-PDF: Non-Parametric Representation of Probability Distributions on the Rotation Manifold (Murphy et al., ICML 2021) 16

Conclusion

- Single-image pose estimation by 3D equivariant pose harmonics estimator
 - Problem 1: the discontinuities and singularities in spatial domain
 - Predict Wigner-D coefficients in frequency-domain for a 3D rotation
 - Problem 2: require large-scale training data
 - SO(3)-equivariant representations for data sampling efficiency
 - Problem 3: pose ambiguity and 3D symmetry in the world
 - Probabilistic prediction by joint training with log-likelihood distribution loss
- Future work
 - More effective rotation representation for 3D space
 - Improving computational efficiency
 - Out-of-distribution domain generalization

Poster Session 4 **Thursday (12nd, Dec), 4:30pm - 7:30pm** See you soon!

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Computer Vision Lab.