
Soft Tensor Product 
Representations for Fully 
Continuous, Compositional 
Visual Representations

Bethia Sun, Maurice Pagnucco, Yang Song

School of Computer Science and Engineering, UNSW Sydney





Motivation

• Theoretical: long philosophical tradition (Fodor, 

Chomsky) of inductively arguing from key 

properties of human cognition that cognition itself

must be underpinned by a compositional system 

[1, 2].

• Empirical: compositional representations 

enhance interpretability [4, 5], sample efficiency 

[6, 7], fairness [8, 9, 10], robustness to OOD 

settings [7, 11, 12].



Existing Work 

• Disentanglement is a key approach for compositional representation learning. 

• Aims to isolate underlying factors of variation (FoVs) into distinct parts of the 
representation.

• i.e., FoVs should be 1-1 mapped to representational parts – the Jacobian requirement of  [13].



Disentanglement and Symbolic Compositionality

• Disentanglement enforces a fundamentally 
symbolic treatment of compositional 
structure. 

• This is because disentanglement essentially 
allocates FoVs to distinct representational slots. 

• The overall representation is thus analogous to a 
string formed by the concatenation of FoV 
slots (tokens).



Our Key Hypothesis

• Symbolic compositional representations are fundamentally incompatible with the 
continuous vector spaces of deep learning:

• The symbolic/continuous mismatch manifests in broadly suboptimal deep learning 
model behaviour.



A New Way of Treating Compositional 
Structure?

• Can we align compositional structure 
with continuous vector spaces, by 
formulating a fundamentally
continuous compositional 
representation?

• Such an approach smoothly blends FoVs 
into the representation – like the 
continuous superimposition of multiple 
waves into an aggregate wave (in red on 
the RHS)



Soft TPR Framework 

• To do this, we propose a new compositional representation learning 
framework, the Soft Tensor Product Representation (TPR) framework, which 
comprises:

1. Soft TPR: a new, inherently continuous compositional representational 
form.  

2. Soft TPR Autoencoder: a theoretically-principled method for learning Soft 
TPRs.



Soft TPR

• Our Soft TPR form is a new mathematical specification that 
represents compositional structure continuously:

• It extends upon Smolensky’s Tensor Product Representation
[3].

• Soft TPR preserves the traditional TPR’s useful 
mathematical & structural properties (see paper for proofs & further 
details).

• Soft TPRs have the added benefits of being easier to learn 
and more representationally flexible than TPRs.
➞ This allows Soft TPRs to be applied in broader settings 

compared to traditional TPRs [14, 15, 16, 17, 18, 19, 20] 
e.g., the non-formal domain of vision with a more realistic weak 
supervision requirement. 

𝑧 ∈ 𝑥 ∈ 𝑉𝐹 ⊗ 𝑉𝑅 𝑥 − 𝜓𝑡𝑝𝑟 𝐹
 ≤ 𝜖}

Soft TPR Form:

where 𝐴 𝐹  denotes Frobenius norm of 𝐴,
𝜖 some small, +ve scalar-valued constant,

𝜓𝑡𝑝𝑟  a (traditional) TPR produced by TPR function mapping from data to TPRs in 𝑉𝐹 ⊗ 𝑉𝑅



Soft TPR Autoencoder

• A novel framework introduced to learn Soft TPRs. 3 main components (please see paper for 
more details):

• Encoder: Produces a candidate Soft TPR, 𝑧.

• TPR Decoder: Leverages the mathematical properties of the Soft TPR/TPR framework to 
encourage 𝑧 to have the correct mathematical form of a Soft TPR (unsupervised loss).

• Weak Supervision: Apply a weakly supervised loss inspired by prior disentanglement 
work [21, 22, 23, 24, 25] to encourage 𝑧 to contain the correct semantic content.



Results

• Our results empirically suggest that the enhanced vector space alignment 
produced by Soft TPRs is broadly beneficial for deep learning models (both 
representation learners & downstream models).

• Please see the Appendix in our paper for an extensive suite of experimental results. 



Result #1: Structural

• Structurally, Soft TPRs are more explicitly compositional than baselines 
(as quantified by disentanglement metrics).

• SoTA disentanglement (DCI boosts of 29%+, 74%+ on Cars3D/MPI3D).



Result #2: Representation Learner 
Convergence

• Soft TPRs have faster representation learner convergence.

• Representations useful for downstream tasks can be consistently learned 
with substantially fewer representation learner training iterations.

• We consider the 2 standard downstream tasks used in disentanglement: FoV regression and abstract visual 
reasoning. 

• Note that at 100 iterations of representation learner training, Soft TPRs (in blue) achieve performance (Fig 20 & Fig 
22) that is only achieved with 2 orders’ magnitude more training iterations by the most competitive baseline. 



Result #3: Downstream Performance

• Soft TPRs have substantially superior downstream sample efficiency 
(e.g., 93%+) and low-sample regime performance (e.g., 138%+, 168%+).

• Again, we consider the 2 standard downstream tasks of FoV regression and abstract 
visual reasoning, a subset of results below: 



Thank you  

• In summary: 

1. We propose a new framework for learning fully continuous compositional representations (Soft TPR + 
Soft TPR Autoencoder)

2. Our approach is the first to learn fully continuous compositional representations in the non-formal 
domain of vision

3. Extensive empirical results highlight the far-reaching benefits of our representation’s enhanced vector 
space alignment, for representational structure, representation learners, and downstream models, 
underscoring the necessity of reconceptualising compositional representations in a fully continuous 
manner.

• Please see our full paper for more details on our approach, including proofs, conceptual 
motivation, theory, and suggestions for future work.

• Code is available! 

• Questions? Thoughts? Contact bethia.sun@unsw.edu.au

Paper Code

mailto:bethia.sun@unsw.edu.au
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