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Motivation

* Theoretical: long philosophical tradition (Fodor,
Chomsky) of inductively arguing from key
properties of human cognition that cognition itself
must be underpinned by a compositional system

- Empirical: compositional representations = | o R o Bl o RREE S
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Existing Work

« Disentanglement is a key approach for compositional representation learning.

« Aims to isolate underlying factors of variation (FoVs) into distinct parts of the
representation.
* i.e., FoVs should be 1-1 mapped to representational parts — the Jacobian requirement of
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Disentanglement and Symbolic Compositionality

« Disentanglement enforces a fundamentally A B O D
symbolic treatment of compositional 2
structure. L
« This is because disentanglement essentially o g | [ |
allocates FoVs to distinct representational slots. T 3
a concatenate
£
L

* The overall representation is thus analogous to a
string formed by the concatenation of FoV
slots (tokens).

Representation,
P(x)
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Our Key Hypothesis

« Symbolic compositional representations are fundamentally incompatible with the
continuous vector spaces of deep learning:

Gradient Fragmentation Incompatible Representational Structure

* Consider a disentangled representation in R3, with3 1D
FoVs.

* Byencoding FoVs in separate, independent slots, this
approach prevents FoVs from being encoded as flexible
combinations of basis vectors spanning the entire
space (i.e., R3), limiting representational expressivity.

* Weillustrate this concept using the hyperboloid (right),
combining all 3 basis vectors in R3, versus a pair of
orthogonal planes (left).

* Updating a single FoV (shown in yellow) restricts
gradient propagation to dimensions associated with
that slot (i.e., no gradient flows across other
dimensions, indicated by gray arrows).

* This inhibits the smooth flow of gradient across the
entire vector space, i.e., RE,

* Transitions between such updates can be abrupt and
discontinuous, potentially complicating learning.

« The symbolic/continuous mismatch manifests in broadly suboptimal deep learning
model behaviour.



A New Way of Treating Compositional
Structure?

0
« Can we align compositional structure 3 ‘ A
with continuous vector spaces, by L; ~
formulating a fundamentally o
continuous compositional Bl
representation? £ \_ )
» Such an approach smoothly blends FoVs L l

into the representation — like the
continuous superimposition of multiple
waves into an aggregate wave (in red on
the RHS)

some continuous,
interactive operation

l
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Soft TPR Framework

« To do this, we propose a new compositional representation learning
framework, the Soft Tensor Product Representation (TPR) framework, which
comprises:

1. Soft TPR: a new, inherently continuous compositional representational
form.

2. Soft TPR Autoencoder: a theoretically-principled method for learning Soft
TPRs.



Soft TPR

* Our Soft TPR form is a new mathematical specification that
represents compositional structure continuously:

Soft TPRs

Soft TPR Form:
ZE{XEVF®VR | |x _lptpr”F SE}

where || 4]l denotes Frobenius norm of 4,
€ some small, +ve scalar-valued constant,
Y¢pr a (traditional) TPR produced by TPR function mapping from data to TPRs in Vr @ Vg

* It extends upon Smolensky’s Tensor Product Representation

e-radius

Underlying Representational Space
Ve @ Vg

» Soft TPR preserves the traditional TPR'’s useful

gnaﬁh)ematical & structural properties (see paper for proofs & further
etails).

» Soft TPRs have the added benefits of being easier to learn
and more representationally flexible than TPRs.

— This allows Soft TPRs to be applied in broader settings

compared to traditional TPRs |14 _ 9,
e.g., the non-formal domain of vision with a more realistic weak
supervision requirement.



Soft TPR Autoencoder
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» Anovel framework introduced to learn Soft TPRs. 3 main components (please see paper for
more details):

« Encoder: Produces a candidate Soft TPR, z.

« TPR Decoder: Leverages the mathematical properties of the Soft TPR/TPR framework to
encourage z to have the correct mathematical form of a Soft TPR (unsupervised loss).

 Weak Supervision: Apply a weakly supervised loss inspired by prior disentanglement
work to encourage z to contain the correct semantic content.



Results

« Our results empirically suggest that the enhanced vector space alignment
produced by Soft TPRs is broadly beneficial for deep learning models (both
representation learners & downstream models).

* Please see the Appendix in our paper for an extensive suite of experimental results.



Result #1: Structural

 Structurally, Soft TPRs are more explicitly compositional than baselines
(as quantified by disentanglement metrics).

» SoTA disentanglement (DCI boosts of : on Cars3D/MPI3D).

Table 1: FactorVAE and DCI scores. Additional results in Section C.3.3

Cars3D Shapes3D MPI3D
Models FactorVAE score DCI score FactorVAE score DCI score FactorVAE score DCI score

Symbolic scalar-tokened compositional representations

Slow-VAE 0.902 £0.035 0509 +£0.027 0950+ 0.032 0.850+£0.047 0.455+0.083 0.355 + 0.027

Ada-GVAE-k 0947 £ 0.064 0.664+0.167 0.973+£0.006 0963+ 0.077 0.496 + 0.095 0.343 £+ 0.040

GVAE 0.877 £0.081 0262+0.095 0921 +0.075 0.842+0.040 0378 £0.024 0.245 + 0.074

ML-VAE 0.870 £ 0.052 0.216 £0.063 0.835+0.111 0.7394+0.115 0.390 £ 0.026  0.251 4+ 0.029

Shu 0.573 £0.062 0.032£0.014 0.265+0.043 0.017+0.006 0.287 +0.034  0.033 + 0.008
Symbolic vector-tokened compositional representations

VCT 0.966 = 0.029 0382+£0.080 0.957+0.043 0.884+£0.013 0.689£0.035 0.475 + 0.005

COMET 0.339 £ 0.008 0.024 £0.026  0.168 £0.005 0.002 £0.000 0.145+0.024  0.005 £ 0.001

Fully continuous compositional representations
Ours 0.999 +0.001 0.863 +£0.027 0984 +=0.012 0.926 £0.028 0.949 = 0.032  0.828 + 0.015



Result #2:. Representation Learner
Convergence

« Soft TPRs have faster representation learner convergence.

« Representations useful for downstream tasks can be consistently learned

with substantially fewer representation learner training iterations.

* We consider the 2 standard downstream tasks used in disentanglement: FoV regression and abstract visual
reasoning.

* Note that at 100 iterations of representation learner training, Soft TPRs (in blue) achieve performance (Fig 20 & Fig
22) that is only achieved with 2 orders’ magnitude more training iterations by the most competitive baseline.
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Figure 22: Convergence of representation learners as measured by classification performance on the abstract

Figure 20: Convergence of representation learners as measured by FoV regression on the MPI3D dataset : : ; ;i 5 .
visual reasoning dataset (dimensionality-controlled setting)

(dimensionality-controlled setting)



Result #3: Downstream Performance

« Soft TPRs have substantially superior downstream sample efficiency
(e.qg., ) and low-sample regime performance (e.g., ).

» Again, we consider the 2 standard downstream tasks of FoV regression and abstract
visual reasoning, a subset of results below:

Table 5: Abstract visual reasoning ac-
curacy in the low-sample regime of 500
samples.

Models Symbolic scalar-tokened

Table 4: Downstream FoV R? scores (odd columns) and sample
efficiencies (even columns) on the MPI3D dataset.
100 samples 100 samples/all 250 samples 250 samples/all

Models Symbolic scalar-tokened compositional representations
Slow-VAE  0.127 £ 0.050 0.130+£0.051  0.152+0.011  0.155 + 0.011 Slow-VAE 0.196 + 0.028
Ada-GVAEk  0.206 +0.031 0270+0.037  02134+0.023 0279 +0.026 Ada-GVAE-k 0.203 + 0.007
GVAE 0.181 £ 0.030  0.234 + 0.035 0.217 £ 0.023 0.282 + 0.027 GVAE 0.182 £0.013
ML-VAE 0.182 +£0.013 0.236 &+ 0.019 0.222 £+ 0.024 0.288 £ 0.030 ML-VAE 0.193 +0.012
Shu 0.151 £ 0.016 0.343 +0.024 0.211 £ 0.026 0.482 £+ 0.075 Shu 0.200 £+ 0.010
Symbolic vector-tokened compositional representations Symbolic vector-tokened
VCT 0.086 £ 0.051 0.189 £+ 0.107 0.119 £ 0.070 0.246 £+ 0.137 VCT 0.277 + 0.039
COMET -0.051 +£0.015 0.000 £ 0.000 -0.042 + 0.018 0.000 =+ 0.000 COMET 0259 + 0.016
Fully continuous compositional representations Fully continuous
Ours 0.490 + 0.068  0.556 & 0.078 0.594 + 0.056 0.665 =+ 0.067

Ours 0.360 + 0.033



Thank you ®

* In summary:

1. We propose a new framework for learning fully continuous compositional representations (Soft TPR +
Soft TPR Autoencoder)

2. Our approach is the first to learn fully continuous compositional representations in the non-formal
domain of vision

3. Extensive empirical results highlight the far-reaching benefits of our representation’s enhanced vector
space alignment, for representational structure, representation learners, and downstream models,

underscoring the necessity of reconceptualising compositional representations in a fully continuous
manner.

» Please see our full paper for more details on our approach, including proofs, conceptual
motivation, theory, and suggestions for future work.

« Code is available!
* Questions? Thoughts? Contact bethia.sun@unsw.edu.au
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