Soft Tensor Product Representations for Fully Continuous, Compositional Visual Representations

Bethia Sun, Maurice Pagnucco, Yang Song

School of Computer Science and Engineering, UNSW Sydney

Motivation

 Theoretical: long philosophical tradition (Fodor, Chomsky) of inductively arguing from key properties of human cognition that cognition itself *must* be underpinned by a compositional system [1, 2].

 Empirical: compositional representations enhance interpretability [4, 5], sample efficiency [6, 7], fairness [8, 9, 10], robustness to OOD settings [7, 11, 12].

Existing Work

- **Disentanglement** is a key approach for compositional representation learning.
- Aims to isolate underlying factors of variation (FoVs) into distinct parts of the representation.
 - i.e., FoVs should be 1-1 mapped to representational parts the Jacobian requirement of [13].

Disentanglement and Symbolic Compositionality

- Disentanglement enforces a fundamentally symbolic treatment of compositional structure.
 - This is because disentanglement essentially allocates FoVs to distinct representational **slots**.
 - The overall representation is thus analogous to a string formed by the concatenation of FoV slots (*tokens*).

Our Key Hypothesis

 Symbolic compositional representations are fundamentally incompatible with the continuous vector spaces of deep learning:

- Updating a *single* FoV (shown in yellow) restricts gradient propagation to dimensions associated with that slot (i.e., no gradient flows across other dimensions, indicated by gray arrows).
- This inhibits the smooth flow of gradient across the entire vector space, i.e., ℝ⁶.
- Transitions between such updates can be *abrupt* and *discontinuous*, potentially **complicating learning**.

Incompatible Representational Structure

- Consider a disentangled representation in \mathbb{R}^3 , with 3 1D FoVs.
- By encoding FoVs in separate, independent slots, this approach prevents FoVs from being encoded as *flexible combinations* of basis vectors spanning the **entire space** (i.e., R³), limiting representational expressivity.
- We illustrate this concept using the hyperboloid (right), combining all 3 basis vectors in ℝ³, versus a pair of orthogonal planes (left).
- The symbolic/continuous mismatch manifests in broadly suboptimal deep learning model behaviour.

A New Way of Treating Compositional Structure?

- Can we align compositional structure with continuous vector spaces, by formulating a fundamentally continuous compositional representation?
 - Such an approach smoothly blends FoVs into the representation – like the continuous superimposition of multiple waves into an aggregate wave (in red on the RHS)

Soft TPR Framework

- To do this, we propose a new compositional representation learning framework, the Soft Tensor Product Representation (TPR) framework, which comprises:
- 1. Soft TPR: a new, inherently continuous compositional representational form.
- 2. Soft TPR Autoencoder: a theoretically-principled method for learning Soft TPRs.

Soft TPR

 Our Soft TPR form is a new mathematical specification that represents compositional structure continuously:

```
Soft TPR Form:

z \in \{x \in V_F \otimes V_R \mid \|x - \psi_{tpr}\|_F \le \epsilon\}
where \|A\|_F denotes Frobenius norm of A,

\epsilon some small, +ve scalar-valued constant,

\psi_{tpr} a (traditional) TPR produced by TPR function mapping from data to TPRs in V_F \otimes V_R
```

- It extends upon Smolensky's Tensor Product Representation
 [3].
- Soft TPR preserves the traditional TPR's useful mathematical & structural properties (see paper for proofs & further details).
- Soft TPRs have the added benefits of being **easier** to learn and more representationally **flexible** than TPRs.
 - → This allows Soft TPRs to be applied in **broader settings** compared to traditional TPRs [14, 15, 16, 17, 18, 19, 20] e.g., the non-formal domain of *vision* with a more realistic *weak* supervision requirement.

Soft TPR Autoencoder

- A novel framework introduced to learn Soft TPRs. 3 main components (please see paper for more details):
- Encoder: Produces a candidate Soft TPR, z.
- **TPR Decoder**: Leverages the mathematical properties of the Soft TPR/TPR framework to encourage *z* to have the correct **mathematical form** of a Soft TPR (unsupervised loss).
- Weak Supervision: Apply a weakly supervised loss inspired by prior disentanglement work [21, 22, 23, 24, 25] to encourage *z* to contain the correct semantic content.

Results

- Our results empirically suggest that the enhanced vector space alignment produced by Soft TPRs is broadly beneficial for deep learning models (both representation learners & downstream models).
 - Please see the Appendix in our paper for an extensive suite of experimental results.

Result #1: Structural

- Structurally, Soft TPRs are more explicitly compositional than baselines (as quantified by disentanglement metrics).
 - SoTA disentanglement (DCI boosts of 29%+, 74%+ on Cars3D/MPI3D).

	Cars3D		Shapes3D		MPI3D			
Models	FactorVAE score	DCI score	FactorVAE score	DCI score	FactorVAE score	DCI score		
Symbolic scalar-tokened compositional representations								
Slow-VAE	0.902 ± 0.035	0.509 ± 0.027	0.950 ± 0.032	0.850 ± 0.047	0.455 ± 0.083	0.355 ± 0.027		
Ada-GVAE-k	0.947 ± 0.064	$\textit{0.664} \pm \textit{0.167}$	$\textbf{0.973} \pm \textbf{0.006}$	$\textbf{0.963} \pm \textbf{0.077}$	0.496 ± 0.095	0.343 ± 0.040		
GVAE	0.877 ± 0.081	0.262 ± 0.095	0.921 ± 0.075	0.842 ± 0.040	0.378 ± 0.024	0.245 ± 0.074		
ML-VAE	0.870 ± 0.052	0.216 ± 0.063	0.835 ± 0.111	0.739 ± 0.115	0.390 ± 0.026	0.251 ± 0.029		
Shu	0.573 ± 0.062	0.032 ± 0.014	0.265 ± 0.043	0.017 ± 0.006	0.287 ± 0.034	0.033 ± 0.008		
Symbolic vector-tokened compositional representations								
VCT	0.966 ± 0.029	0.382 ± 0.080	0.957 ± 0.043	0.884 ± 0.013	0.689 ± 0.035	0.475 ± 0.005		
COMET	0.339 ± 0.008	0.024 ± 0.026	0.168 ± 0.005	0.002 ± 0.000	0.145 ± 0.024	0.005 ± 0.001		
Fully continuous compositional representations								
Ours	$\textbf{0.999} \pm \textbf{0.001}$	$\textbf{0.863} \pm \textbf{0.027}$	$\textbf{0.984} \pm \textbf{0.012}$	$\textbf{0.926} \pm \textbf{0.028}$	$\textbf{0.949} \pm \textbf{0.032}$	$\textbf{0.828} \pm \textbf{0.015}$		

Table 1: FactorVAE and DCI scores. Additional results in Section C.3.3

Result #2: Representation Learner Convergence

- Soft TPRs have faster representation learner convergence.
- Representations useful for downstream tasks can be consistently learned with substantially fewer representation learner training iterations.
 - We consider the 2 standard downstream tasks used in disentanglement: FoV regression and abstract visual reasoning.
 - Note that at 100 iterations of representation learner training, Soft TPRs (in blue) achieve performance (Fig 20 & Fig 22) that is only achieved with **2 orders' magnitude** more training iterations by the most competitive baseline.

Figure 20: Convergence of representation learners as measured by FoV regression on the MPI3D dataset (dimensionality-controlled setting)

Figure 22: Convergence of representation learners as measured by classification performance on the abstract visual reasoning dataset (dimensionality-controlled setting)

Result #3: Downstream Performance

- Soft TPRs have substantially superior downstream sample efficiency (e.g., 93%+) and low-sample regime performance (e.g., 138%+, 168%+).
 - Again, we consider the 2 standard downstream tasks of FoV regression and abstract visual reasoning, a subset of results below:

Table 4: Downstream FoV R^2 scores (odd columns) and sample efficiencies (even columns) on the MPI3D dataset.

	100 samples	100 samples/all	250 samples	250 samples/all		
Models	Symbolic scalar-tokened compositional representations					
Slow-VAE	0.127 ± 0.050	0.130 ± 0.051	0.152 ± 0.011	0.155 ± 0.011		
Ada-GVAE-k	$\textbf{0.206} \pm \textbf{0.031}$	0.270 ± 0.037	0.213 ± 0.023	0.279 ± 0.026		
GVAE	0.181 ± 0.030	0.234 ± 0.035	0.217 ± 0.023	0.282 ± 0.027		
ML-VAE	0.182 ± 0.013	0.236 ± 0.019	0.222 ± 0.024	0.288 ± 0.030		
Shu	0.151 ± 0.016	$\textbf{0.343} \pm \textbf{0.024}$	0.211 ± 0.026	$\textbf{0.482} \pm \textbf{0.075}$		
Symbolic vector-tokened compositional representations						
VCT	0.086 ± 0.051	0.189 ± 0.107	0.119 ± 0.070	0.246 ± 0.137		
COMET	$\textbf{-0.051} \pm \textbf{0.015}$	0.000 ± 0.000	$\textbf{-0.042} \pm 0.018$	0.000 ± 0.000		
Fully continuous compositional representations						
Ours	$\textbf{0.490} \pm \textbf{0.068}$	$\textbf{0.556} \pm \textbf{0.078}$	$\textbf{0.594} \pm \textbf{0.056}$	$\textbf{0.665} \pm \textbf{0.067}$		

Table 5: Abstract visual reasoning accuracy in the low-sample regime of 500 samples.

<u>*</u>			
Models	Symbolic scalar-tokened		
Slow-VAE	0.196 ± 0.028		
Ada-GVAE-k	0.203 ± 0.007		
GVAE	0.182 ± 0.013		
ML-VAE	0.193 ± 0.012		
Shu	0.200 ± 0.010		
	Symbolic vector-tokened		
VCT	0.277 ± 0.039		
COMET	0.259 ± 0.016		
	Fully continuous		
Ours	$\textbf{0.360} \pm \textbf{0.033}$		

- In summary:
 - 1. We propose a **new framework** for learning fully continuous compositional representations (Soft TPR + Soft TPR Autoencoder)
 - 2. Our approach is the **first** to learn fully continuous compositional representations in the **non-formal** domain of vision
 - 3. Extensive empirical results highlight the far-reaching benefits of our representation's enhanced vector space alignment, for representational structure, representation learners, and downstream models, underscoring the necessity of reconceptualising compositional representations in a fully continuous manner.
- Please see our full paper for more details on our approach, including proofs, conceptual motivation, theory, and suggestions for future work.
- Code is available!
- Questions? Thoughts? Contact <u>bethia.sun@unsw.edu.au</u>

Code

References 1/2

[1] Noam Chomsky. Syntactic Structures. The Hague: Mouton, 1957.

[2] Jerry A. Fodor. The Language of Thought: A Theory of Mental Representation. Cambridge, MA: Harvard University Press, 1975.

[3] Paul Smolensky. "Tensor product variable binding and the representation of symbolic structures in connectionist systems". In: Artificial Intelligence 46.1 (1990), pp. 159–216.

[4] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. "beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework". In: International Conference on Learning Representations. 2017.

[5] Tameem Adel, Zoubin Ghahramani, and Adrian Weller. "Discovering Interpretable Representations for Both Deep Generative and Discriminative Models". In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 50–59.

[6] Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem. "Are disentangled representations helpful for abstract visual reasoning?" In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019

[7] F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen. "Weakly-Supervised Disentanglement Without Compromises". In: Proceedings of the 37th International Conference on Machine Learning (ICML). Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 6348–6359

[8] Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, and Richard Zemel. "Flexibly Fair Representation Learning by Disentanglement". In: Proceedings of the 36th International Conference on Machine Learning. 2019.

[9] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations". In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 4114–4124.

[10] Sungho Park, Sunhee Hwang, Dohyung Kim, and Hyeran Byun. "Learning Disentangled Representation for Fair Facial Attribute Classification via Fairness-aware Information Alignment". In: Proceedings of the AAAI Conference on Artificial Intelligence 35 (2021), pp. 2403–2411

[11] H. Zhang, Y.-F. Zhang, W. Liu, A. Weller, B. Schölkopf, and E. Xing. "Towards Principled Disentanglement for Domain Generalization". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 8024–8034

[12] Haoyang Li, Xin Wang, Zeyang Zhang, Haibo Chen, Ziwei Zhang, and Wenwu Zhu. "Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization". In: Forty-first International Conference on Machine Learning. 2024.

[13] Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal, Bernhard Schölkopf, and Stefan Bauer. "On Disentangled Representations Learned from Correlated Data". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Proceedings of Machine Learning Research. 2021, pp. 10401–10412.

References 2/2

[14] Kezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Kenneth D. Forbus, and Jianfeng Gao. "Natural- to formal-language generation using Tensor Product Representations". In: CoRR abs/1910.02339 (2019). arXiv: 1910.02339. URL: http://arxiv.org/abs/1910.02339

[15] Qiuyuan Huang, Li Deng, Dapeng Wu, Chang Liu, and Xiaodong He. "Attentive Tensor Product Learning". In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (2019), pp. 1344–1351

[16] Imanol Schlag and Jürgen Schmidhuber. "Learning to Reason with Third-Order Tensor Products". In: Advances in Neural Processing Information Systems. 2019.

[17] R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky. "Tensor Product Decomposition Networks: Uncovering Representations of Structure Learned by Neural Networks". In: Proceedings of the Society for Computation in Linguistics 2020. Association for Computational Linguistics, 2020, pp. 277–278. URL: https://aclanthology.org/2020.scil-1.34.

[18] Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, and Dapeng Wu. "Tensor Product Generation Networks for Deep NLP Modeling". In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics.

[19] Yichen Jiang, Asli Celikyilmaz, Paul Smolensky, Paul Soulos, Sudha Rao, Hamid Palangi, Roland Fernandez, Caitlin Smith, Mohit Bansal, and Jianfeng Gao. "Enriching Transformers with Structured Tensor-Product Representations for Abstractive Summarization". In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Online: Association for Computational Linguistics, 2021, pp. 4780–4793. DOI: 10.18653/v1/2021.naacl-main.381. URL: https://aclanthology.org/2021.naacl-main.381.

[20] Taewon Park, Inchul Choi, and Minho Lee. "Attention-based Iterative Decomposition for Tensor Product Representation". In: The Twelfth International Conference on Learning Representations. 2024. URL: <u>https://openreview.net/forum?id=FDb2JQZsFH</u>.

[21] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. "Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations". In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (2018).

[22] Haruo Hosoya. "Group-based learning of disentangled representations with generalizability for novel contents". In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, pp. 2506–2513.

[23] Junxiang Chen and Kayhan Batmanghelich. "Weakly Supervised Disentanglement by Pairwise Similarities". In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (2020), pp. 3495– 3502

[24] F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen. "Weakly-Supervised Disentanglement Without Compromises". In: Proceedings of the 37th International Conference on Machine Learning (ICML). Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 6348–6359.

[25] Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. "Weakly Supervised Disentanglement with Guarantees". In: International Conference on Learning Representations. 2020.