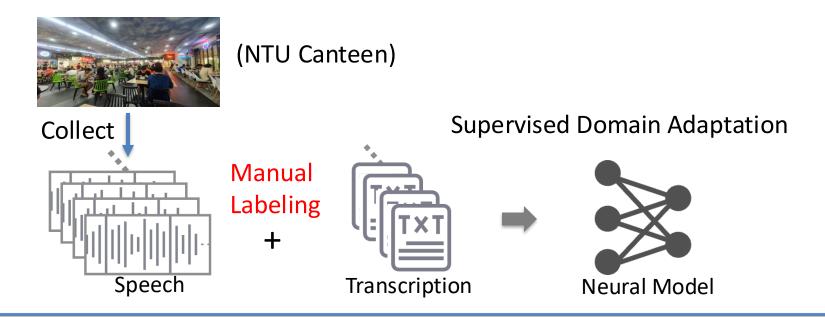
Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models

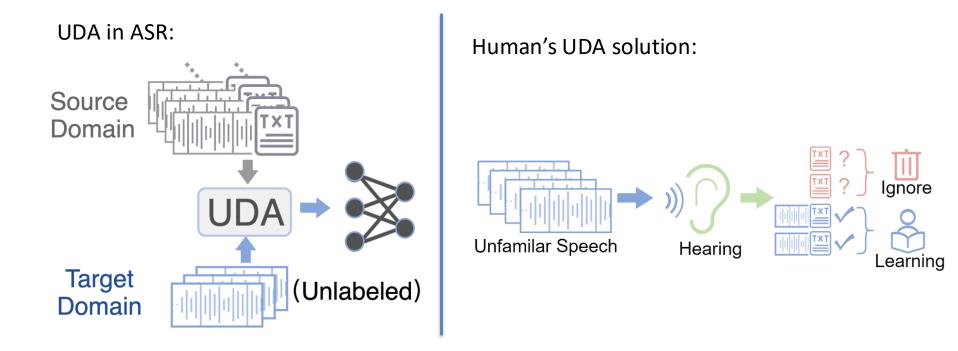
Yuchen Hu^{*}, Chen Chen^{*}, Chao-Han Huck Yang, Chengwei Qin, Pin-Yu Chen, Eng Siong Chng, Chao Zhang


NeurIPS 2024 (Poster)

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

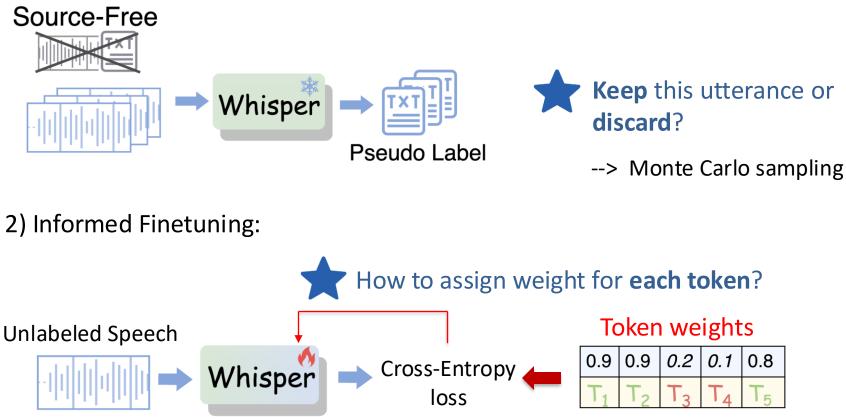
Motivation

To deploy an ASR system in a practical scenario:



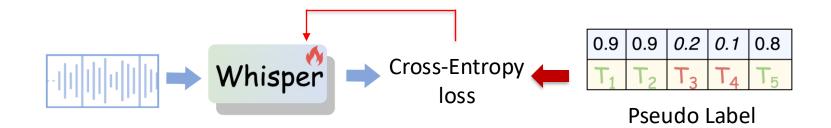
A very convenient approach is:

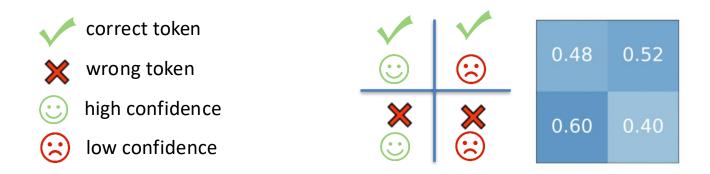
Motivation



- "Unsupervised" is for adaptation process, but the learning schedule is semi-supervised.
- Considering the exhibited ability of large speech model:
 Can we skip the source-domain data for target domain adaptation? → Source-free UDA

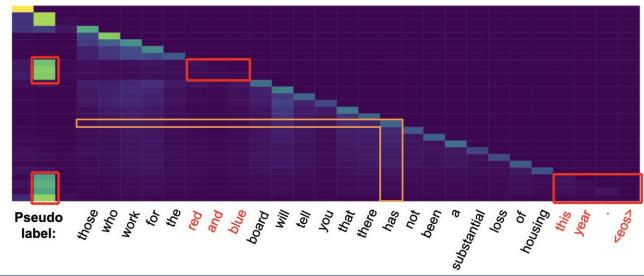
Method (Self-training/Semi-ASR)


1) Pseudo Labeling:


Pseudo Label

Candidate 1: Confidence Score

Experimental observation: decoding performance on CHiME-4 test-real



Confidence score is unreliable!

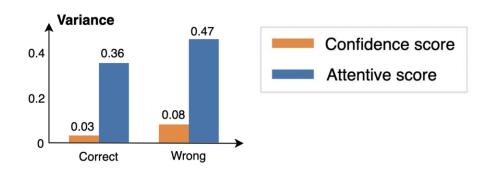
Candidate 2: Self-Attention Matrix

< |transcribe|>

Attentive score:


$$\mathcal{A}_l = \sum_{j=4}^l W_{l,j} + \sum_{i=l+1}^L W_{i,l},$$

The importance of *l*-th token in whole utterance^[8]

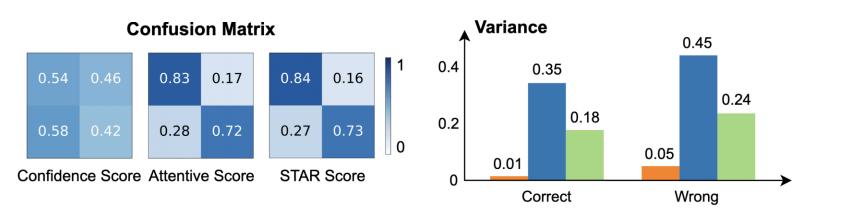

6

Correct/Wrong

Is A_l more **reliable** than C_l ?

Is A_l stable for guide finetuning?

Conclusion: attentive score is **more reliable** but **less stable** than confidence score.


STAR: Integrate A and C for each token

Criteria: - If *A*-*C* conflict, then follow *A*:

$$\mathcal{S}_l^{ ext{conf}} = [\sigma(\mathcal{A}_l^2/\mathcal{C}_l - \lambda) + \sigma(\mathcal{C}_l^2/\mathcal{A}_l - \lambda)] * \mathcal{A}_l$$

- If A-C consistent, then calibrate A using C:

$$S_l^{\text{cons}} = \left[\sigma(\lambda - \mathcal{A}_l^2/\mathcal{C}_l) * \sigma(\lambda - \mathcal{C}_l^2/\mathcal{A}_l)\right] * \\ \mathcal{A}_l * e^{(\mathcal{C}_l - \mathcal{A}_l)/\tau}.$$

7

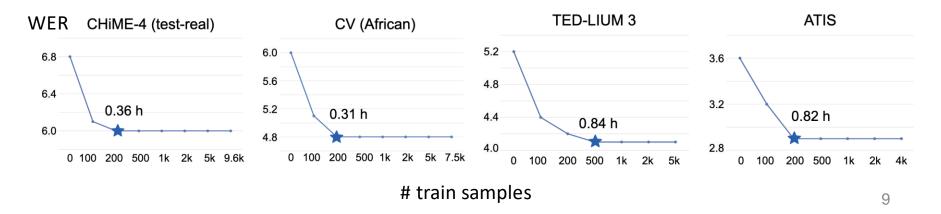
Quick validation:

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Effectiveness on Various Domains

STAR = Self-TAught Recognizer

Testing S	Whisper (frozen)		Whisper (self-train.)	$\mathrm{UTT}_{\mathrm{filter}}$	$\mid \begin{array}{c} \mathrm{TOK} \\ \mathcal{C}_l \end{array}$	eweight \mathcal{A}_l	STAR (ours)		Whisper (real label)	
			Backgrou	und Noise						
	test-real	6.8	Ι	6.9	6.4	6.5	6.2	$6.0_{-11.8\%}$	Τ	5.2
CUENE 4	test-simu	9.9		10.1	9.7	9.8	9.5	$9.4_{-5.1\%}$		8.7
CHiME-4	dev-real	4.6		4.5	4.3	4.3	4.1	$3.9_{-15.2\%}$		3.2
	dev-simu	7.0		7.0	6.6	6.7	6.6	$6.4_{-8.6\%}$		5.9
	babble	40.2		37.6	35.0	33.5	31.3	$30.2_{-24.9\%}$	I	27.2
LS-FreeSound	airport	15.6		15.5	15.2	15.3	15.0	$14.8_{-5.1\%}$		14.5
	car	2.9		3.0	2.8	2.8	2.6	$2.5_{-13.8\%}$		2.4
RATS	radio	46.9		47.2	46.0	45.5	44.9	$44.6_{-4.9\%}$		38.6
			Ĺ	Speaker	Accents			Ì		
	African	6.0		5.8	5.5	5.4	5.0	$4.8_{-20.0\%}$		4.6
CommonVoice	Australian	5.8		5.7	5.6	5.5	5.2	$5.1_{-12.1\%}$		4.3
	Indian	6.6		6.5	6.3	6.4	6.1	6.0 _{-9.1%}		5.7
	Singaporean	6.5		6.2	5.8	5.8	5.4	$5.1_{-21.5\%}$		4.9
				Specific S	Scenarios					
TED-LIUM 3	TED talks	5.2		4.9	4.7	4.8	4.3	$4.1_{-21.2\%}$		3.6
SwitchBoard	telephone	20.8		20.5	19.8	19.3	18.6	$18.1_{-13.0\%}$		15.3
LRS2	BBC talks	8.5		8.3	7.6	7.9	7.4	$7.0_{-17.6\%}$		5.6
ATIS	airline info.	3.6		3.5	3.3	3.3	3.2	$2.9_{-19.4\%}$		2.0
CORAAL	interview	21.5		21.3	20.8	20.7	20.4	$20.1_{-6.5\%}$		17.9
WhisperPreviouszero-shotSemi-ASR								Ours	F	Real-lab training



STAR can avoid forgetting:

Model	LS- babble	FreeSound airport	l car	RATS	af (Commo <i>au</i>	onVoico <i>in</i>	e sg	TED-3	SWBD	ATIS
Frozen Self-train.	$\begin{array}{ c c } 40.2 \\ 38.2 \end{array}$	15.6 16.6	2.9 2.9	$ 46.9 \\ 47.3 $	6.0 6.4	5.8 5.9	6.6 6.7	6.5 6.3	5.2 5.3	13.3 13.7	$\begin{array}{c c} 3.6\\ 3.4 \end{array}$
STAR	33.3	15.7	2.8	46.1	6.1	5.8	6.7	5.6	5.0	13.5	2.9

Train on CHiME-4 and test on OOD

STAR enjoys high data efficiency:

Generalization

- Other models

Model	Baseline	Self-train.	STAR	Real
Whisper-V3-1.5B	6.8	6.9	$6.0_{-11.8\%}$	5.2
Whisper-Med-0.8B	8.9	8.8	$8.0_{-10.1\%}$	7.1
OWSM-V3.1-1.0B	8.4	8.1	$7.5_{-10.7\%}$	6.5
Canary-1.0B	8.2	8.0	$7.2_{-12.2\%}$	6.4
Parakeet-TDT-1.1B	8.0	7.8	$7.0_{-12.5\%}$	6.2

- Other task (Speech Translation on FLURS)

$X \to En$	Baseline	Self-train.	STAR	Real
Ar	21.9	22.1	$23.3_{\pm 1.4}$	24.5
De	33.7	34.0	$35.9_{+2.2}$	36.5
Es	23.9	24.1	$24.8_{+0.9}$	26.4
Fa	16.6	16.3	$17.6_{\pm 1.0}$	19.0
Hi	22.4	22.5	$23.4_{\pm 1.0}$	24.4
Zh	16.3	16.3	$17.1_{+0.8}$	17.9

Ablation Study

- Different whisper sizes

Model Size	# Param.	Baseline	STAR	Real
large-v3 large-v2 large	1,550 M	$6.8 \\ 7.7 \\ 7.5$	$ \begin{vmatrix} 6.0_{-11.8\%} \\ 6.9_{-10.4\%} \\ 7.0_{-6.7\%} \end{vmatrix} $	$5.2 \\ 6.0 \\ 6.8$
medium.en small.en base.en	769 M 244 M 74 M	$ \begin{array}{c c} 8.9 \\ 12.7 \\ 32.4 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 7.1 \\ 9.0 \\ 16.1 \end{array}$

- Different training methods

Approach	# Param.*	Baseline	STAR	Real					
Regular Finetuning									
Full	1550 M		$ 6.0_{-11.8\%}$	5.2					
Enc-only	635 M	6.8	$6.3_{-7.4\%}$	5.0					
Dec-only	907 M		$6.1_{-10.3\%}$	4.4					
Parameter-Efficient Finetuning									
LoRA	16 M	6.8	$6.0_{-11.8\%}$	5.1					
Reprogram.	0.4 M	0.0	$6.7_{-1.5\%}$	6.7					

Iterative Finetuning

Model	Test set	0	1	# Iter 2	ations 3	4	5	Real label
large-v3 medium.en small.en base.en	test-real	$ \begin{array}{c c} 6.8 \\ 8.9 \\ 12.7 \\ 34.4 \end{array} $	$6.0 \\ 8.0 \\ 10.6 \\ 17.7$	5.9 7.9 10.3 17.2	5.7 7.9 10.3 17.2	5.7 7.8 10.3 17.0	5.7 7.8 10.3 17.0	$ \begin{array}{c c} 5.2 \\ 7.1 \\ 9.0 \\ 16.1 \end{array} $
large-v3	test-simu dev-real dev-simu af au in sg	$\begin{array}{ c c } 9.9 \\ 4.6 \\ 7.0 \\ 6.0 \\ 5.8 \\ 6.6 \\ 6.5 \end{array}$	$9.4 \\ 3.9 \\ 6.4 \\ 4.8 \\ 5.1 \\ 6.0 \\ 5.1$	$9.3 \\ 3.9 \\ 6.4 \\ 4.8 \\ 5.0 \\ 5.8 \\ 5.1$	$9.0 \\ 3.8 \\ 6.4 \\ 4.7 \\ 4.6 \\ 5.8 \\ 5.1$	$8.9 \\ 3.8 \\ 6.3 \\ 4.7 \\ 4.5 \\ 5.8 \\ 5.1$	$\begin{array}{c} 8.9 \\ 3.8 \\ 6.3 \\ 4.7 \\ 4.5 \\ 5.8 \\ 5.1 \end{array}$	$\begin{vmatrix} 8.7 \\ 3.2 \\ 5.9 \\ 4.6 \\ 4.3 \\ 5.7 \\ 4.9 \end{vmatrix}$

- Iterative post-training can further improve results
- Little further improvements after 3 iterations

Conclusion & Discussion

Easy-to-use:

- A pretrained Model + 1-hour *unlabeled* speech
- **13.5%** relative WER reduction across **14** target domains (noise, accent, etc.)

Generalization:

- Other models: SeamlessM4T, OWSM, Canary
- Other task: Speech Translation

Anti-forgetting:

- Avoid common catastrophic forgetting in domain adaptation

Discussion

- Large models' attention matrix can present their uncertainty
- Self-improvement is possible in large speech foundation Model

Thank you! & QA

14

Appendix: LLM Hallucination

- Non-Hallucinations: describes the food (e.g., bananas, nuts, oatmeal) inside the bowel
- Hallucinations: imagines the items on the table that is outside the image

NOTE: Hallucinations starts with "In addition to ..."

Appendix: LLM Hallucination

InstructBLIP:

In the image, a young man is performing a skateboarding trick in a residential area. He is riding a skateboard and jumping over a tree trunk that is lying on the ... away from him. Additionally, there are two cars parked in the area, likely belonging to residents or visitors of the neighborhood.

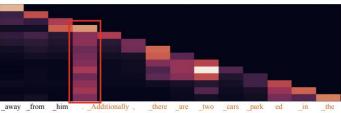


Figure 2. A case of relationship between hallucinations and knowledge aggregation patterns. Hallucinations are highlighted.

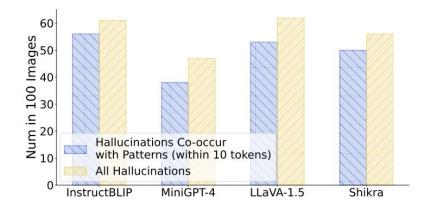


Figure 3. Hallucinations often start within the first 10 tokens after knowledge aggregation patterns.

- Hallucinations are usually triggered by specific tokens (e.g., "additionally");
- We can observe a "knowledge aggregation pattern" in self-attention map along with the beginning of hallucinations \rightarrow An insightful finding!

Appendix: LLM Hallucination

In the image, a young man is performing a skateboarding trick in a residential area. He is riding a skateboard and jumping over a tree trunk that is lying on the ... away from him. Additionally, there are two cars parked in the area, likely belonging to residents or visitors of the neighborhood.

Figure 2. A case of relationship between hallucinations and knowledge aggregation patterns. Hallucinations are highlighted.

All hallucinations are highly related to the starting token "additionally" but unrelated to previous normal tokens!