Penalty-based Methods for Simple Bilevel Optimization under Hölderian Error Bounds

Pengyu Chen Xu Shi Rujun Jiang Jiulin Wang

Fudan University School of Data Science

November 11, 2024

Contents

• Simple bilevel optimization (SBO):

$$\min_{x \in \mathbb{R}^n} F(x) \quad \text{s.t.} x \in \arg\min_{u \in X} G(u). \tag{P}$$

where $F, G : \mathbb{R}^n \to \mathbb{R} \bigcup \{\infty\}$ are proper, convex, and lower semi-continuous functions.

- Challenge:
 - The feasible set $X_{opt} := \{x \mid \arg\min_{u \in X} G(u)\}.$
 - Main challenge: The implicit availability of X_{opt} makes it impossible to simply apply standard first-order methods.

Contents

Penalized Framework

SBO:

$$\min_{x \in \mathbb{R}^n} F(x) \quad \text{s.t.} x \in \arg\min_{u \in X} G(u). \tag{P}$$

Penalized SBO:

$$\min_{x \in \mathbb{R}^n} \Phi_{\gamma}(x) = F(x) + \gamma p(x), \tag{P}_{\gamma})$$

where $p(x) = G(x) - G^*$ is the residual function.

•
$$p(x) \ge 0$$
, and $p(x) = 0$ if and only if $x \in X_{opt}$.

- **Definition.** Given $\epsilon_f > 0$ and $\epsilon_g > 0$. We say \tilde{x}^* is an (ϵ_f, ϵ_g) -optimal solution of (P) if it holds that $F(\tilde{x}^*) F^* \leq \epsilon_f, \quad G(\tilde{x}^*) G^* \leq \epsilon_g.$
- Define: x
 ^{*}_γ is an ε-optimal solution of (P_γ) if it satisfies the following inequality:

$$\Phi_{\gamma}(ilde{x}^*_{\gamma}) - \Phi^*_{\gamma} \leq \epsilon.$$

Assumptions

Assumption 1.1 (Hölderian error bound):

The function $p: X \mapsto \mathbb{R}$ satisfies the Hölderian error bound with exponent $\alpha \geq 1$ and $\rho > 0$ on the lower-level optimal solution set X_{opt} , i.e.,

 $\rho p(x) \geq \operatorname{dist}(x, X_{\operatorname{opt}})^{\alpha}.$

$G(\mathbf{x})$	Remarks	Name	α
$\max_{i \in [m]} \{ \langle \mathbf{a}_i, \mathbf{x} \rangle - b_i \}$	$\mathbf{a}_i \in \mathbb{R}^n, i \in [m], b \in \mathbb{R}^m$	piece-wise maximum	1
$\ \mathbf{x} - \mathbf{x}_0\ _Q = \sqrt{(\mathbf{x} - \mathbf{x}_0)^{\mathrm{T}}Q(\mathbf{x} - \mathbf{x}_0)}$	$Q\in\mathbb{S}^n, Q\succ 0, \mathbf{x}_0\in\mathbb{R}^n$	Q-norm	1
$\ \mathbf{x} - \mathbf{x}_0\ _p$	$\mathbf{x}_0 \in \mathbb{R}^n, p \ge 1$	ℓ_p -norm	1
$ x _1 + \frac{\tau}{2} x ^2$	$\tau > 0$	Elastic net	1 or 2 ⁴
$ A\mathbf{x} - b ^2$	$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$	Least squares	2
$\frac{1}{m}\sum_{i=1}^{m}\log(1+\exp(-\mathbf{a}_{i}^{\mathrm{T}}\mathbf{x}b_{i}))$	$\mathbf{a}_i \in \mathbb{R}^n, i \in [m], b \in \mathbb{R}^m, A \in \mathbb{R}^{m imes n}$	Logistic loss	2
$\eta(\mathbf{x}) + \frac{\sigma}{2} \ \mathbf{x}\ ^2$	η convex, $\sigma > 0$	Strongly-convex	2

Assumptions

SBO:

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} F(x) \triangleq f_1(x) + f_2(x) \\ \text{s.t.} \quad x \in \arg\min_{u \in X} G(u) \triangleq g_1(u) + g_2(u),$$
 (P

• Assumption 1.2

The set $S := \bigcup_{x \in X_{opt}} \partial F(\mathbf{x})$ is bounded with a diameter $I_F := \max_{xi \in S} ||xi||$.

When the upper-level objective F is non-convex, we replace the assumption with the condition that the upper-level objective is Lipschitz continuous.

Penalized Framework

Relationship between (ϵ_f, ϵ_g) -optimal solution of (P) and ϵ -optimal solution of (P_{γ}) :

- Lemma 1. (Motivated by [1]¹) Suppose that Assumptions 1.1 and 1.2 hold with $\alpha > 1$. Then, for any $\epsilon > 0$, a global solution of (P) is an ϵ -optimal solution of (P_{γ}) when $\gamma \ge \gamma^* = \rho l_F^{\alpha} (\alpha 1)^{\alpha 1} \alpha^{-\alpha} \epsilon^{1 \alpha}$.
- Lemma 2. Suppose that Assumptions 1.1 and 1.2 hold with $\alpha = 1$ and $\gamma \ge \gamma^* = \rho I_F$. Then there is an exact penalization:
 - A global optimal solution of (P) is also a global optimal solution of (P_{γ}) ;
 - Conversely, a global optimal solution of (P_{γ}) is also a global optimal solution of (P).
- * Note: we use γ^* to denote the lower bound of γ in both cases.

¹H. Shen and T. Chen. On penalty-based bilevel gradient descent method. In <u>Proceedings of the 40th International Conference on Machine Learning</u>, volume 202 of <u>Proceedings of Machine Learning</u> <u>Research</u>, pages 30992–31015. PMLR, 2023.

Main Result

Relationship between (ϵ_f, ϵ_g) -optimal solution of (P) and ϵ -optimal solution of (P_{γ}) :

• Suppose that Assumptions 1.1 and 1.2 hold. For any given $\epsilon > 0$ and $\beta > 0,$ let

$$\gamma = \gamma^* + \begin{cases} 2I_F^{\beta} \epsilon^{1-\beta} & \text{if } \alpha > 1, \\ I_F^{\beta} \epsilon^{1-\beta} & \text{if } \alpha = 1. \end{cases}$$

If \tilde{x}^*_{γ} is an ϵ -optimal solution of problem (P_{γ}), then \tilde{x}^*_{γ} is an $(\epsilon, l_F^{-\beta} \epsilon^{\beta})$ -optimal solution of problem (P).

• Suppose that the Assumptions 1.1 and 1.2 hold. Then, \tilde{x}^*_γ satisfies the following suboptimality lower bound,

$$F(\tilde{x}^*_{\gamma}) - F^* \geq -l_F(\rho l_F^{-\beta} \epsilon^{\beta})^{\frac{1}{\alpha}}.$$

THANK YOU FOR YOUR LISTENING!