Universal Physics Transformers (UPT) A Framework For Efficiently Scaling Neural Operators

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter

TLDR

- Current neural operators research largely focuses on small-scale problems (1K-10K inputs)
 Interesting problems often have 100 thousands or millions of inputs
- We introduce a framework for efficient neural operators
 - Reduced latent space modeling
 - Applicable to Eulerian and Lagrangian data
 - Leverage scalability of transformers

Datapoints

Background: Reduced Order Modeling

- Uncompressed representation: 400 2D vectors
- Abstract representation: "four swirls"

Transient Flow Simulations

Current Landscape of Neural Operators

- Existing neural operator architectures don't scale well
 - Architectures that can't handle large inputs
 - No input compression

JYU JOHANNES KEPLER UNIVERSITY LINZ

Architecture

• Encoder

- Aggregate information into supernodes
- ° Exchange global information
- ° Reduce into a small latent space
- Approximator
 - Propagate latent space forward in time
- Decoder
 - Decode the latent space at arbitrary query positions

Results: Transient Flow Simulations

- Self-generated computational fluid dynamics (CFD) dataset
- 10K simulations (8K train, 1K validation, 1K test)
- Adaptive meshing (between 29K and 59K mesh points)
- 2D problem

Results: Transient Flow Simulations

• UPTs easily outperform competition

UPTs for Lagrangian Simulations

• UPTs can model the underlying velocity field extremely well

Thanks for your attention!

Project Page + Code https://ml-jku.github.io/UPT

Paper https://arxiv.org/abs/2402.12365

Tutorial https://github.com/BenediktAlkin/upt-tutorial

