Mitigating Externalities while Learning

A. Scheid, A. Capitaine, E. Boursier, E. Moulines, M. Jordan, A. Durmus

NeurIPS 2024

Example of externalities: factories on a river

Example: factories on a river

Upstream utility: $\pi_1(q_1)$ increases with q_1 **Downstream utility:** $\pi_2(q_1, q_2)$ increases with q_2 and decreases with q_1

Upstream optimal strategy: $q_1^{\star} = \arg \max \pi_1(q)$

Downstream optimal strategy: $q_2^{\star} = \arg \max \pi_2(q_1^{\star}, q)$

Social inefficiency: $\pi_1(q_1^{\star}) + \pi_2(q_1^{\star}, q_2^{\star}) < max_{q_1, q_2} \{ \pi(q_1) + \pi(q_1, q_2) \}$

Recovering social optimum

Idea: allowing proprietary rights to restore social efficiency

 \rightarrow recover social optimum

 $\max \pi_1(q_1) + \pi_2(q_1, q_2)$ q_1, q_2

Issue: the players do not know their utilities!

We can recover social optimum through transfers

What if we learn utility functions over time?

For instance: Ressource sharing

Model with transfers

At each time *t*:

- Downstream player proposes payment $(\tau, \tilde{a}) \in \mathbb{R}_+ \times [K]$
- 2. Upstream player:
- observes $(\tau(t), \tilde{a}_t)$
- plays $A_t \in [K]$
- 3. Downstream player: plays $B_t \in [K]$
 - gets reward $X_{A_t,B_t}(t)$
 - observes separately

Downstream Player

- receives and observes: $Z_{A_t}(t) + 1_{A_t = \tilde{a}} \tau$

$$\begin{array}{l} \textbf{f}) - \mathbf{1}_{A_t = \tilde{a}} \tau \\ \textbf{y} \ X_{A_t, B_t}(t) \text{ and } \mathbf{1}_{A_t = \tilde{a}} \end{array} \end{array}$$

Downstream Player

Designing no regret strategies

Upstream player is a no-regret learner

Downstream policy

Idea: run batched binary searches to find τ_a^{\star} : the minimal incentive to have $A_t = a$

- Propose payment (a, τ) for T^{α} successive time steps
- Observe T^{\neq} the number of times upstream did not pull a

Using the **no-regret assumption**, w.h.p.

• If
$$T^{\neq} > CT^{\alpha\kappa+\beta}$$
, then $\tau_a^{\star} > \tau - \frac{1}{T^{\beta}}$
• If $T^{\neq} < T^{\alpha} - CT^{\alpha\kappa+\beta}$, then $\tau_a^{\star} < \tau + \frac{1}{T^{\beta}}$

For any β s.t. $\alpha \kappa + \beta < \alpha$

Downstream policy

Theorem

 \rightarrow most of the regret is due to waiting for the upstream player learning

- \rightarrow upstream and downstream players can typically use UCB as a subroutine

 \rightarrow the faster does the upstream player learns, the better for the downstream one

Conclusion

Summary:

- Study a repeated two player games with an upstream/downstream relation
- We propose a downstream algorithm that works for general upstream policies

Direct extensions:

- Instance dependent bounds
- Anytime policy
- Extension to linear contextual case

Perspectives

Higher level questions:

- More general interactions between multiple learning agents
- Propose black box independent strategies
- Potential long term strategic manipulations

Thank you!