NeurIPS 2024

Mitigating Externalities while Learning

A. Scheid, A. Capitaine, E. Boursier, E. Moulines, M. Jordan, A. Durmus

2

Example of externalities: factories on a river

Example: factories on a river

Upstream utility: $\pi_1(q_1)$ increases with q_1 **Downstream utility:** $\pi_2(q_1, q_2)$ increases with q_2 and decreases with q_1

Upstream optimal strategy: q_1^{\star} Downstream optimal strategy: q_2^{\star} γ_1^{\star} = arg max *q*

 τ_2^{\star} = arg max $\pi_2(q_1^{\star}, q)$ *q*

 $\pi_1(q_1^{\star}) + \pi_2(q_1^{\star}, q_2^{\star}) < max_{q_1, q_2} {\pi(q_1) + \pi(q_1, q_2)}$

externality

 $\pi_1(q)$

Social inefficiency:

Recovering social optimum

Idea: allowing proprietary rights to restore social efficiency

4

*q*1,*q*² $max \pi_1(q_1) + \pi_2(q_1, q_2)$

 \rightarrow recover social optimum

What if we learn utility functions over time?

Issue: the players do not know their utilities!

We can recover social optimum through transfers

Ressource sharing

Model with transfers

At each time t:

- 1. Downstream player proposes payment $(\tau, \tilde{a}) \in \mathbb{R}_+ \times [K]$
- 2. Upstream player:
- $(\tau(t),\tilde{a})$ *t*)
- $-$ plays $A_t \in [K]$
	-
- 3. Downstream player: $-$ plays $B_t \in [K]$
	- $-$ gets reward $X_{\!A_t,B_t}\!(t) \mathbf{1}_{A_t}$
		- observes separately

$$
(-1) - 1_{A_t = \tilde{a}} \tau
$$

y
$$
X_{A_t, B_t}(t)
$$
 and
$$
1_{A_t = \tilde{a}}
$$

7

Downstream Player

- receives and observes: $Z_{A_t}(t) + \mathbf{1}_{A_t = \tilde{a}} \tau$

8

Downstream Player

Designing no regret strategies

Upstream player is a no-regret learner

Downstream policy

Idea: run batched binary searches to find τ_a^{\star} : the *minimal incentive* to have *i*

- Propose payment (a, τ) for T^{α} successive time steps
- Observe T^{\neq} the number of times upstream did not pull a

10

Using the **no-regret assumption**, w.h.p.

\n- If
$$
T^{\neq} > CT^{\alpha \kappa + \beta}
$$
, then $\tau_a^{\star} > \tau - \frac{1}{T^{\beta}}$
\n- If $T^{\neq} < T^{\alpha} - CT^{\alpha \kappa + \beta}$, then $\tau_a^{\star} < \tau + \frac{1}{T^{\beta}}$
\n

α^{\star} *the minimal incentive to have* $A_t = a$

For any β s.t. $\alpha \kappa + \beta < \alpha$

Downstream policy

→ most of the regret is due to *waiting for the upstream player learning*

-
- \rightarrow upstream and downstream players can typically use UCB as a subroutine

 \rightarrow the faster does the upstream player learns, the better for the downstream one

11

Theorem

Conclusion

Summary:

- Study a repeated two player games with an upstream/downstream relation
- We propose a downstream algorithm that works for general upstream policies

Direct extensions:

- Instance dependent bounds
- Anytime policy
- Extension to linear contextual case

12

Perspectives

Higher level questions:

- More general interactions between multiple learning agents
- Propose *black box independent* strategies
- Potential long term strategic manipulations

Thank you!