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Interpreting neural networks

How important is a model component?
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Motivating question

Define the ablation loss gap ∆(M,A) := P(M\A)− P(M).

What is the best performance on subtask D the model M
could have achieved without component A?
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Motivating question

Define the ablation loss gap ∆(M,A) := P(M\A)− P(M).

What is the best performance on subtask D the model M
could have achieved without component A?

I. Performance on subtask D is measured via expected loss on the
subtask, i.e. P(M̃) = EX∼D L(M̃(X ),M(X )).

II. Model M could have achieved: M\A is constructed solely by
changing the value of A(X ).

III. Without component A: M\A(x) uses a value for A that
conveys no information about x .
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Example

A (X) M(X)X
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Example

A M(X,A)X

A

Definition: A total ablation method satisfies
M\A(X ) = M\A(X ,A) for A ⊥⊥ X .
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Example

A M(X,A)X

A

Zero ablation: A = 0.
Mean ablation: A = EX ′∼D[A(X ′)]
Resample ablation: A = A(X ′),X ′ ⊥⊥ X .
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Motivating question

Define the ablation loss gap ∆(M,A) := P(M\A)− P(M).

What is the best performance on subtask D the model M
could have achieved without component A?

IV. “Best” performance: we want to understand how much
performance degrades because we had to ablate A.

Seeking best performance avoids interventions that “spoof” the
model by causing it to confuse x for a different input, or treat x in
a way that it never treated any training input.
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Optimal ablation

Definition:

M\A
(opt)(x) := MA(x , a

∗),

a∗ := argmin
a

EX∼D L(MA(X , a),M(X ))

Proposition

Let ∆(M,A) be the ablation loss gap for some component A
measured with any total ablation method. Then

∆opt(M,A) ≤ ∆(M,A)
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Comparison to counterfactual ablation

Counterfactual ablation (CF) considers pairs of parallel inputs.

CF requires manual effort for each subtask and may not be
possible for complex subtasks. OA is more versatile than CF.

When Jessie and James went to the 
market

Jessie gave the potion to...

Ash Serena Brock

When Jessie and James went

After lunch, Ash and Serena walked home. Brock gave the potion to....

to the store, Jessie gave the potion to...
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Comparison to counterfactual ablation

Counterfactual ablation (CF) considers pairs of parallel inputs.

CF removes less information than OA, yet still achieves higher
loss, which is evidence that most loss can be attributed to
spoofing.
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Circuit discovery

We introduce a uniform gradient sampling method to find circuits.
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Circuit discovery results
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Causal tracing

Attn layer i 

"France"

" is the 
capital of"

"Paris"

Layers 1,...,i-1

Layers i+1,..,n

"Paris"  + 
Nm(0,9s^2)

" Italy"

Attn layer i 

"France"

" is the 
capital of"

"Paris"

Layers 1,...,i-1

Layers i+1,..,n

<generic 
country>

" Italy"

Maximilian Li and Lucas Janson

Optimal ablation for interpretability



Motivation Optimal ablation Applications

Causal tracing results
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Latent prediction
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Latent prediction: tuned lens
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Latent prediction: Optimal Constant Attention (OCA lens)
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Latent prediction results
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Latent prediction: causal faithfulness
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Latent prediction: truthful elicitation
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