

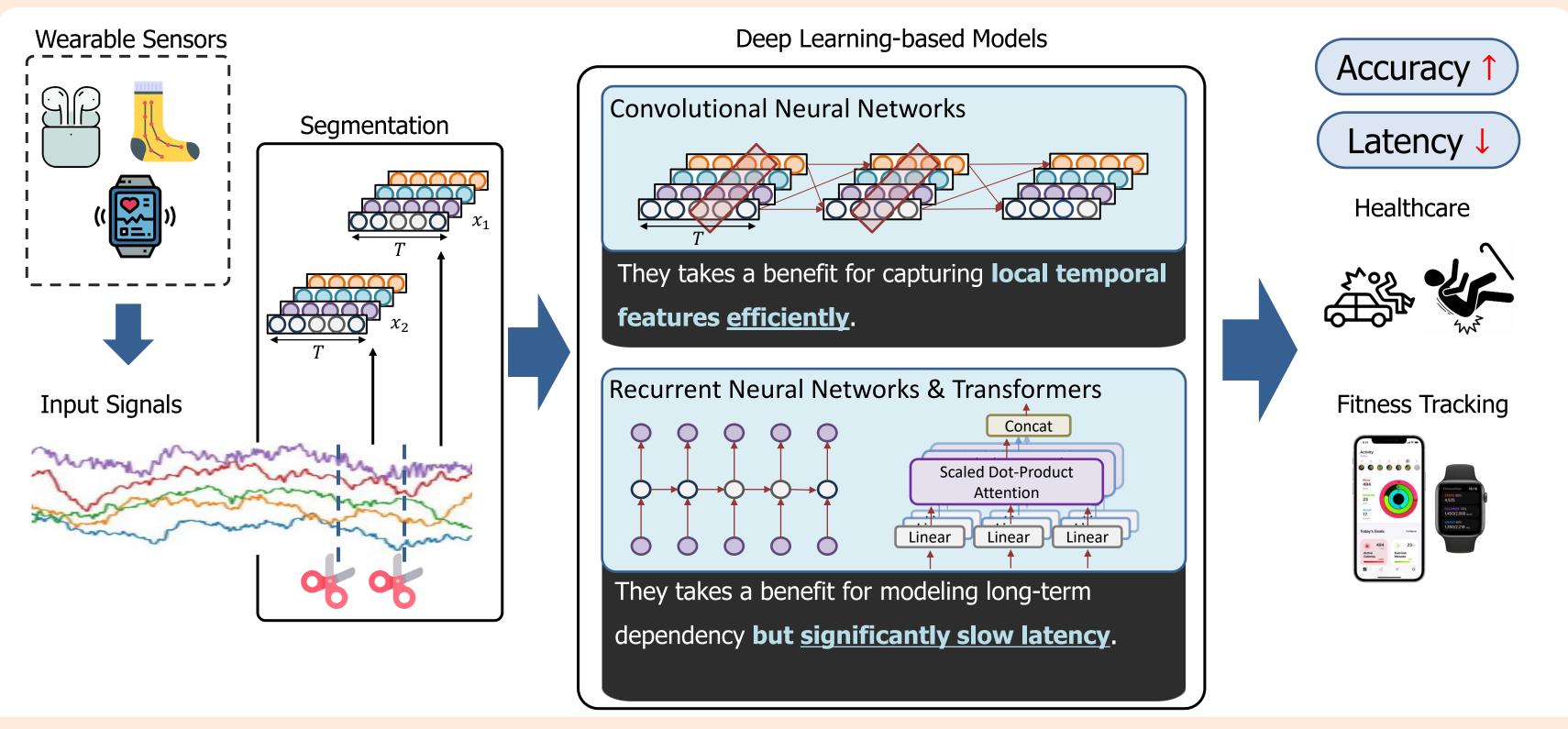
CALANet: Cheap All-Layer Aggregation Network for Human Activity Recognition

Jaegyun Park¹, Dae-Won Kim¹, Jaesung Lee^{2,3}

¹School of Computer Science and Engineering, Chung-Ang University ²Department of Artificial Intelligence, Chung-Ang University ³AI/ML Innovation Research Center, Chung-Ang University

What is Human Activity Recognition?

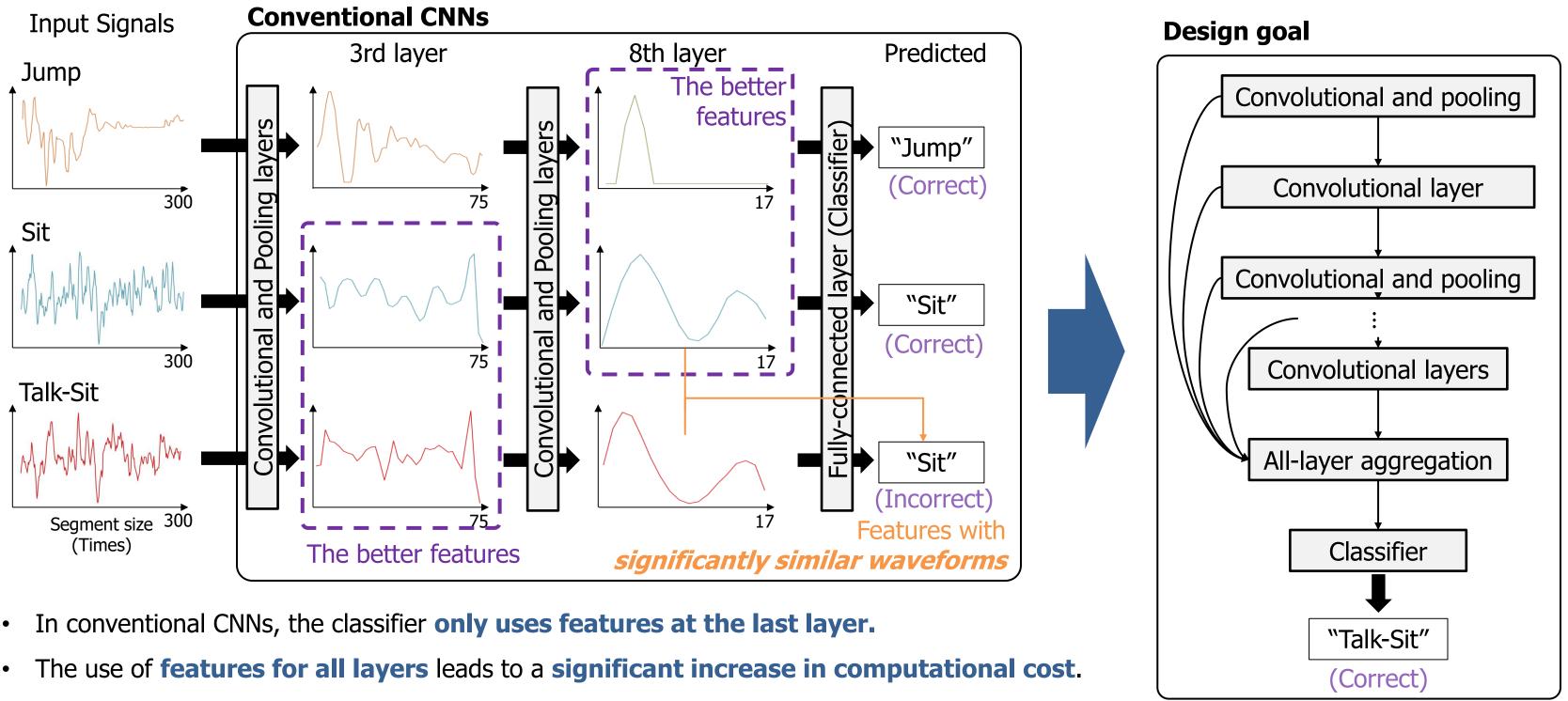
Human Activity Recognition (HAR) aims to record people's behaviors and allows computing systems to monitor, analyze, and assist their daily lives.



We found that CNNs are sufficient to extract meaningful information from the HAR signals with short segmentation lengths.

Motivation

> For the HAR, the loss of detailed information over layers makes it challenging to classify the analogous activities, such as "Sit" and "Talk-Sit" of KU-HAR dataset.

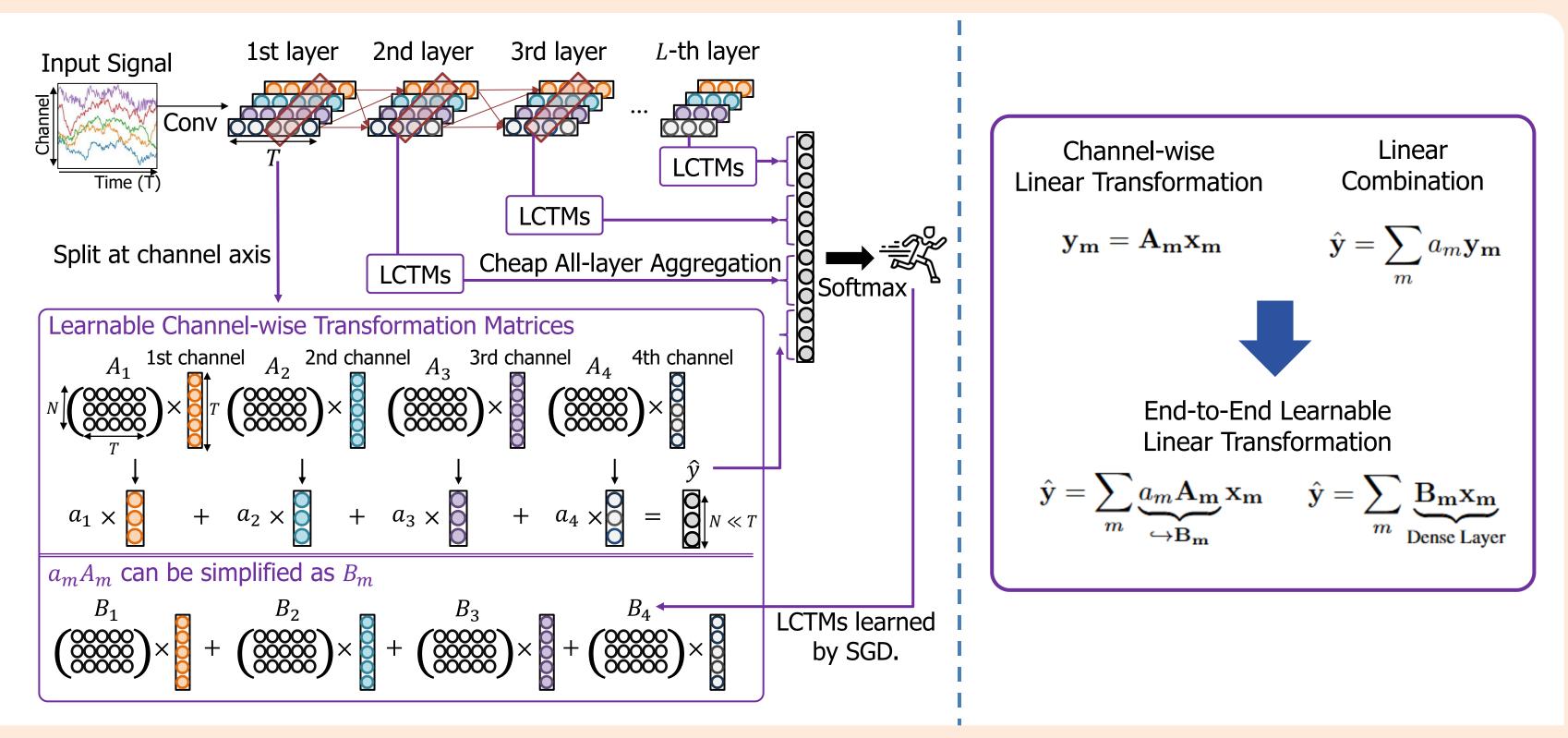


- ٠
- ٠

How can CNNs aggregate <u>all-layer</u> features <u>cheaply</u>?

CALANet: Cheap All-Layer Aggregation Network

Learnable Channel-wise Transformation Matrix (LCTM) compresses global temporal information in each channel at each layer. (Temporal Resolution $T \rightarrow N$, $T \gg N$)



How can CNNs aggregate <u>all-layer</u> features <u>cheaply</u>?

CALANet: Cheap All-Layer Aggregation Network

- > Scalable Layer Aggregation Pool (SLAP) allows CALANet to stack layers without increasing computational cost, improving the effectiveness of all-layer aggregation.
 - We formulated the computational cost of neural networks as a function of architectural parameters in asymptotic notation, i.e., time complexity.

Proposition 1. The time complexity of CNNs is formalized as: $\mathbb{M} \leq \mathbb{N}(L-1) \Longrightarrow \mathcal{O}(\mathbb{T}\mathbb{D}_k\mathbb{N}^2L)$.

• SLAP is achieved by omitting L from **Proposition 1**.

Theorem 1. The time complexity of CALANet is reduced to: $\mathcal{O}(\mathbb{TD}_k\mathbb{N}^2)$.

Corollary 1. The time complexity of CALANet is equivalent to the shallow CNNs with $L \ge 2$.

Corollary 2. The time complexity of CALANet is equivalent to the shallow CNNs with L = 1 if $\mathbb{M} \approx \mathbb{N}$.

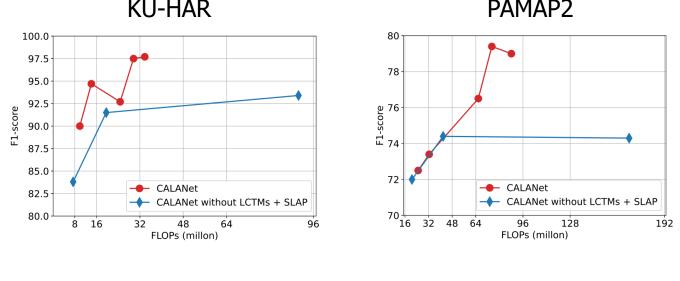
LCTMs and SLAP allow CNNs to aggregate features for all layers while maintaining an efficiency of CNNs.

Experimental Results

Comparison to SoTA

	UCI-HAR		UniMiB-SHAR		DSADS		OPPORTUNITY	
Model	F1	FLOPs	F1	FLOPs	F1	FLOPs	F1	FLOPs
CALANet (Ours)	96.1	7.6M	78.3	8.8M	90.0	8.5M	81.6	19.3M
Shallow ConvNet 23	92.5▼	17.9M	72.2▼	18.2M	85.6▼	48.5M	79.5▼	74.3M
RepHAR [49]	95.1▼	31.8M	71.6▼	37.3M	85.5▼	32.9M	80.0▼	26.0M
DeepConvLSTM [35]	91.4▼	67.2M	71.6▼	80.4M	85.5▼	68.3M	62.0▼	50.4M
Bi-GRU-I 50	94.6▼	46.1M	75.2▼	54.0M	85.6▼	48.7M	77.2▼	39.8M
RevAttNet 40	95.1▼	143.1M	76.7▼	168.7M	87.6▼	140.2M	78.6▼	101.5M
IF-ConvTransformer 63	95.4	209.8M	77.0▼	183.5M	87.5▼	628.4M	82.2	986.2M
T-ResNet [54, 12]	95.3	123.2M	76.5▼	145.5M	87.3▼	125.8M	80.9	96.9M
T-FCN [54] 12	95.8	68.9M	76.9▼	80.6M	86.7▼	76.1M	76.2▼	65.8M
MILLET [11]	94.7▼	111.6M	81.4∆	129.9M	84.3▼	132.8M	82.3	125.0M
DSN [55]	95.4	270.8M	79.8	320.0M	86.4▼	265.7M	71.8▼	192.1M
	KU	KU-HAR		PAMAP2		REALDISP		
Model	F1	FLOPs	F1	FLOPs	F1	FLOPs		
CALANet (Ours)	97.5	29.6M	79.4	74.9M	98.2	56.7M		
Shallow ConvNet 23	77.9▼	41.6M	67.4▼	151.8M	95.9▼	209.9M		
RepHAR [49]	93.4▼	74.4M	73.0▼	131.9M	94.7▼	72.7M		
DeepConvLSTM [35]	93.5▼	169.1M	77.3▼	303.9M	91.7▼	156.9M		
Bi-GRU-I [<u>50</u>]	94.9▼	108.0M	71.0▼	194.1M	96.1▼	111.3M		
RevAttNet 40	97.7	335.3M	79.7	573.5M	98.5	282.1M		
IF-ConvTransformer [63]	96.4▼	491.7M	80.1	1.7G	97.4	3.0G		
T-ResNet [54, 12]	95.0▼	290.0M	71.4▼	506.1M	96.0▼	270.1M		
T-FCN [54, 12]	92.5▼	161.7M	72.5▼	298.5M	95.9▼	184.5M		
MILLET [11]	97.8	262.5M	80.2	509.5M	95.1▼	352.9M		
DSN [55]	97.1	634.8M	68.8▼	1.08G	97.5	532.7M		

	KU-HAR		PAN	MAP2	
Networks	L	F 1	FLOPs	F1	FLOPs
CALANet with LCTMs + SLAP	9	97.5	29.7M	79.4	74.9M
CALANet with LCTMs only		93.8▼	60.0M	73.1▼	113.3M
CALANet with ALA only		95.0▼	577.9M	72.8▼	1.7G
KU-HAR	PAMAP2				



Mod

CAL Shal

> The breakdown effect of CALANet

Real-Time Activity prediction

	Inference Time (ms / window)					
del	Min	Mean	Max			
LANet Illow ConvNet	1.59ms 1.57ms	2.25ms 2.15ms	3.40ms 3.48ms			

Thanks!

Contact Us:

Linkedin

Scholar

AI Lab.

Email: jgp0566.cau@gmail.com

AutoML Lab.

