

Di²Pose: Discrete Diffusion Model for Occluded 3D Human Pose Estimation

Weiquan Wang¹ Jun Xiao¹ Chunping Wang² Wei Liu³ Zhao Wang¹ Long Chen^{4*}

¹Zhejiang University ²Finvolution Group ³Tencent ⁴HKUST

Motivation

(a) Results of DiffPose and Di²Pose in Human3.6M dataset (with MPJPE metric), across varying proportions of training samples
(b) Prediction results of two methods under occlusion

- Challenge in 3D HPE: Accurately estimating 3D human poses from monocular images is difficult, especially when <u>occlusions cause uncertainty and ambiguity.</u>
- Limitations of Existing Methods: Mainstream approaches *overlook interdependencies between joints* by treating them independently, leading to inaccuracies under occlusions.
- Scarcity of 3D Pose Data: Diffusion-based models need large datasets, but *limited 3D pose data* can result in implausible poses that don't reflect human biomechanics, especially in occluded scenarios.

 Di²Pose framework integrates the inherent discreteness of 3D pose data into the diffusion model, offering <u>a new paradigm for addressing 3D HPE under occlusions</u>.

• The designed **pose quantization step** represents 3D poses in a compositional manner, effectively capturing local correlations between joints and confining search space to reasonable configurations.

• The constructed **discrete diffusion process** <u>simulates the complete process of a 3D pose transitioning</u> <u>from occluded to recovered</u>, which introduces the impact of occlusions into pose estimation process. Method

Quantitive Results

Human3.6M

Table 1: Results on Human3.6M in millimeters under MPJPE. The best results are in **bold**, and the second-best ones are <u>underlined</u>.

Methods	Dir	Disc	Eat	Gr.	Phon.	Phot.	Pose	Pur.	Sit	SitD.	Sm.	Wait	W.D.	Walk	W.T.	Avg
Pavlakos et al. [54] CVPR'17	67.4	71.9	66.7	69.1	72.0	77.0	65.0	68.3	83.7	96.5	71.7	65.8	74.9	59.1	63.2	71.9
Martinez et al. [48] ICCV17	51.8	56.2	58.1	59.0	69.5	78.4	55.2	58.1	74.0	94.6	62.3	59.1	65.1	49.5	52.4	62.9
Hossain et al. [29] ECCV18	48.4	50.7	57.2	55.2	63.1	72.6	53.0	51.7	66.1	80.9	59.0	57.3	62.4	46.6	49.6	58.3
Zhao et al. [85] CVPR'19	48.2	60.8	51.8	64.0	64.6	53.6	51.1	67.4	88.7	57.7	73.2	65.6	48.9	64.8	51.9	60.8
Liu et al. [45] ECCV18	46.3	52.2	47.3	50.7	55.5	67.1	49.2	46.0	60.4	71.1	51.5	50.1	54.5	40.3	43.7	52.4
Xu et al. [77] CVPR'21	45.2	49.9	47.5	50.9	54.9	66.1	48.5	46.3	59.7	71.5	51.4	48.6	53.9	39.9	44.1	51.9
Zhao et al. [88] CVPR'22	45.2	50.8	48.0	50.0	54.9	65.0	48.2	47.1	60.2	70.0	51.6	48.7	54.1	39.7	43.1	51.8
Geng et al. [21] CVPR'23	_	<u> </u>		_		10 - 10		-	—		-					50.8
Choi et al. [14] IROS 23	44.3	51.6	46.3	51.1	50.3	54.3	49.4	45.9	57.7	71.6	48.6	49.1	52.1	44.0	44.4	50.7
Zhang et al. [82] TPAMI'23	-	<u></u>			<u></u> -		() <u> </u>	-	_	_			<u> </u>			50.2
Gong et al. [22] CVPR'23	42.8	49.1	<u>45.2</u>	48.7	52.1	63.5	46.3	45.2	58.6	66.3	50.4	<u>47.6</u>	52.0	37.6	40.2	49.7
Di ² Pose (Ours)	41.9	47.8	45.0	49.0	51.5	62.2	45.7	45.6	57.6	67. <mark>1</mark>	50.1	45.3	51.4	37.3	40.9	49.2

Table 2: Evaluation on 3DPW, 3DPW-Occ, and 3DPW-AdvOcc. The number 40 and 80 after 3DPW-AdvOcc denote the occluder size. * denotes the results from our implementation. The best results are in **bold**, and the second-best ones are <u>underlined</u>.

Methods	3DPW [72]		3DPW-	Occ [83]	3DPW-AdvOcc@40 3DPW-AdvOcc				
	MPJPE JP	A-MPJPE	↓ MPJPE ↓ P	A-MPJPE	↓ MPJPE ↓ F	PA-MPJPE	↓MPJPE ↓F	PA-MPJPE↓	
Cai et al. [9] ICCV'19	112.9	69.6	115.8	72.3	241.1	101.4	355.9	116.3	
Pavllo et al. [55] CVPR'19	101.8	63.0	106.7	67.1	221.6	99.4	334.3	112.9	
Cheng et al. [12] AMAT21		64.2		85.7	279.4	113.2	371.4	119.8	
Zheng et al. [90] ICCV'21	118.2	73.1	132.8	80.5	247.9	106.2	359.6	115.5	
Zhang et al. [82]TPAMI'23	91.1	54.3	94.6	56.7	142.5	73.8	251.8	103.9	
Geng et al. * [21] CVPR'23	83.1	53.9	82.8	53.7	127.2	71.9	192.5	92.1	
Gong et al. * [22] CVPR'23	82.7	53.8	82.1	53.5	121.4	70.9	189.3	92.4	
Di ² Pose (Ours)	79.3	50.1	79.6	50.7	108.4	59.8	153.6	78.7	

3DPW

Qualitive Results

- We presents Di²Pose, a novel diffusion-based framework that tackles occluded 3D HPE in discrete space
- Di²Pose first captures the local interactions of joints and represents a 3D pose by multiple quantized tokens. Then, the discrete diffusion process models the discrete tokens in latent space through a conditional diffusion model, which implicitly introduces occlusion into the modeling process for more reliable 3D HPE with occlusions
- Experimental results show that our method surpasses the state-of-the-art approaches on three widely used benchmarks

Future Work

Extend Di²Pose to video datasets to leverage interframe information for enhanced temporal consistency

Thanks for your listening