

Exact, Tractable Gauss-Newton Optimization in Deep Reversible Architectures Reveal Poor Generalization

Davide Buffelli*, Jamie McGowan*, Wangkun Xu, Alexandru Cioba, Da-shan Shiu, Guillaume Hennequin, Alberto Bernacchia

*Equal Contribution

Preliminaries

- Theoretical studies of generalization in GN/NGD have been limited to simplified models:
 - linear models [Amari et al., 2021]
 - nonlinear models taken to their NTK limit [Zhang et al., 2019]
- Studies in "real-world" data so far have required approximations

Our Contributions:

- We derive an exact, computationally tractable expression for Gauss-Newton updates in deep reversible networks
- We study the generalization properties of GN in models up to 147 million parameters

Challenges with GN (and GGN)

• The update involves a pseudoinversion

$$\theta(t+1) = \theta(t) - \alpha J^+ \nabla_f \tilde{L} \quad [\text{recall } J = \frac{df}{d\theta}]$$

- *J* has dimensions $nd_{out} \times |\theta|$
 - Computing J requires $\min(nd_{out}, |\theta|)$ forward/backward passes (using VJPs or JVPs could be batched if it can fit in memory)
 - Pseudoinverting requires $O(nd_{out}|\theta| \cdot \min(nd_{out}, |\theta|))$ compute and $O(nd_{out}|\theta|)$ memory
- We need to find an efficient way of computing **J**⁺

Making the GN update tractable...

... for reversible neural networks

Model Requirements

Models that are amenable to our method have two key properties:

- Every layer has output which is linear in the parameters
- Every layer is reversible (you can obtain the input starting from the output)

Experiments

Full Batch

- Full Batch = random **subset** of data of size 1024
- All the theory is in full batch, these experiments verify that the theory is **correct**.
- Gauss-Newton trains extremely **quickly** and has a **little variation** across seeds compared to Adam/SGD.

Mini-Batch

- In a mini-batch setting, the method breaks down
- Our hypothesis is that GN "overfits" to each mini-batch
- We test this by measuring the loss on the same minibatch **before and after the update**.
- GN leads to a much stronger immediate decrease in the loss

research 🛞

Evolution of the Neural Tangent Kernel

- The community considers "feature learning" as a change in the NTK
- We observe **almost no change** in the NTK
- This signals that Gauss-Newton is not learning features.

Feature Learning with Gauss-Newton

- As another diagnostic test, we check the CKA similarity across training for each layer

 with respect to initialization.
- This shows that the neural representations do not change during training
 - In addition to the *constant NTK* this is indicative of a "lazy" learning regime.
- Gauss-Newton seems to not be able to promote feature learning

Many more experiments available in the paper!

Thanks for Listening

Come and chat with us at our booth!

Is Our Practical Update "the Same" as the Theoretical One?

Yes! (under some assumptions)

Assumption 4.1. Assume $J(\theta)$ has linearly independent rows (is surjective) for all θ in the domain where GN dynamics takes place.

Theorem 4.3. Under Assumption 4.1 so that there is a right inverse J^{\dashv} satisfying $JJ^{\dashv} = I$, consider the update in parameter space with respect to the flow induced by an arbitrary right inverse J^{\dashv} :

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha J^{\mathsf{H}} \nabla_{\mathbf{f}} \tilde{\mathcal{L}}.$$
(8)

Then the loss along these trajectories is the same up to $\mathcal{O}(\alpha)$, i.e. for any two choices J_1^{\dashv} and J_2^{\dashv} , the corresponding iterates $\theta_t^{(1)}$ and $\theta_t^{(2)}$ satisfy:

$$\|\nabla_{\mathbf{f}} \tilde{\mathcal{L}}(\mathbf{f}(\boldsymbol{\theta}_t^{(1)})) - \nabla_{\mathbf{f}} \tilde{\mathcal{L}}(\mathbf{f}(\boldsymbol{\theta}_t^{(2)}))\| \le \mathcal{O}(\alpha).$$
(9)

Moreover, as the Moore-Penrose pseudo-inverse is a right inverse under the assumptions, the result applies to J^+ , and consequently to the dynamics of (5).

