
Exact, Tractable Gauss-Newton Optimization in 
Deep Reversible Architectures Reveal Poor 
Generalization

Davide Buffelli*, Jamie McGowan*, Wangkun Xu, Alexandru Cioba, 
Da-shan Shiu, Guillaume Hennequin, Alberto Bernacchia

*Equal Contribution



Preliminaries

• Theoretical studies of generalization in GN/NGD have been limited to simplified models:

• linear models [Amari et al., 2021]

• nonlinear models taken to their NTK limit [Zhang et al., 2019]

• Studies in “real-world” data so far have required approximations

Our Contributions:

• We derive an exact, computationally tractable expression for 
Gauss-Newton updates in deep reversible networks

• We study the generalization properties of GN in models up to 
147 million parameters



Challenges with GN (and GGN)

• The update involves a pseudoinversion

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝛼𝐽+∇𝑓 ෨𝐿 [recall 𝐽 =
𝑑𝑓

𝑑𝜃
]

• 𝐽 has dimensions 𝑛𝑑𝑜𝑢𝑡 × 𝜃

• Computing 𝐽 requires min(𝑛𝑑𝑜𝑢𝑡 , 𝜃 ) forward/backward passes (using VJPs or JVPs – could 
be batched if it can fit in memory)

• Pseudoinverting requires O 𝑛𝑑𝑜𝑢𝑡 𝜃 ⋅ min 𝑛𝑑𝑜𝑢𝑡 , 𝜃 compute and O 𝑛𝑑𝑜𝑢𝑡 𝜃 memory

• We need to find an efficient way of computing 𝑱+



Making the GN update tractable…
… for reversible neural networks



Model Requirements

Models that are amenable to our method have two key properties:

• Every layer has output which is linear in the parameters

• Every layer is reversible (you can obtain the input starting from the output)

𝑊1𝑋0 Σ1 𝑊2Σ2 𝑊3Σ3 𝑊4Σ4 𝑌

𝑋ℓ = 𝑊ℓΣℓ(𝑋ℓ−1)

𝑋1 𝑋2 𝑋3



Practical GN Update

Pseudoinversion of matrix with size 𝑛 ×

𝑑𝑙𝑎𝑦𝑒𝑟 which costs 𝑂൫

൯

𝑛𝑑𝑙𝑎𝑦𝑒𝑟 ⋅

min 𝑛, 𝑑𝑙𝑎𝑦𝑒𝑟

𝑊ℓ 𝑡 + 1 = 𝑊ℓ 𝑡 − 𝛼 𝐽ℓ
+ϵ

= 𝑊ℓ 𝑡 − 𝛼[
𝜕 𝑌

𝜕Xℓ
Σℓ 𝑋ℓ−1 ]+ϵ

= 𝑊ℓ 𝑡 − 𝛼 Σℓ 𝑋ℓ−1
+ 𝜕Xℓ

𝜕 𝑌
ϵ

JVP – can be computed through autodiff at the 
cost of 1 forward pass

Our update

• computational cost of O(𝐿𝑛𝑑2 + 𝐿𝑛2𝑑)

• memory cost of O(𝑛𝑑 + |𝜃|)

SGD

• computational cost of O(𝐿𝑛𝑑2)

• memory cost of O(𝑛𝑑 + |𝜃|)

Theoretical Result

Our update with 𝐽⊣ has the same convergence properties as Gauss-Newton with 𝐽+

assuming J has linearly independent rows for all 𝜽



Experiments



Full Batch

• Full Batch = random subset of data of size 1024

• All the theory is in full batch, these experiments verify that the theory is 
correct.

• Gauss-Newton trains extremely quickly and has a little variation across seeds 
compared to Adam/SGD.



Mini-Batch

• In a mini-batch setting, the method breaks down

• Our hypothesis is that GN “overfits” to each mini-batch

• We test this by measuring the loss on the same mini-
batch before and after the update.

• GN leads to a much stronger immediate decrease in the 
loss



Evolution of the Neural Tangent Kernel

• The community considers “feature learning” as a change 
in the NTK

• We observe almost no change in the NTK

• This signals that Gauss-Newton is not learning features.



Feature Learning with Gauss-Newton

• As another diagnostic test, we check the CKA similarity across training for each layer 
– with respect to initialization.

• This shows that the neural representations do not change during training

• In addition to the constant NTK this is indicative of a “lazy” learning regime.

• Gauss-Newton seems to not be able to promote feature learning

Many more experiments available in the paper!



Thanks for Listening
Come and chat with us at our booth!



Yes! (under some assumptions)

Is Our Practical Update “the Same” as the Theoretical 
One?


