

A Walsh Hadamard Derived Linear Vector Symbolic Architecture

Mohammad Mahmudul Alam, Alexander Oberle, Edward Raff, Stella Biderman, Tim Oates, James Holt

Booz | Allen | Hamilton

- Many VSAs have shown issues in numerical stability, computational complexity, or suboptimal performance when applied in neural network
- Introduced a novel VSA derived from Walsh Hadamard transformation, named Hadamard-derived Linear Binding (HLB)
- HLB supports commutative and associative binding in linear time and provides a numerically stable exact inverse while unbinding
- Defined a bimodal distribution which is proposed as initialization condition that avoids numerical instability
- Moreover, mathematically derived a correction term that improves the response of HLB during unbinding

The Binding function is defined by replacing the Fourier transform in circular convolution with the Hadamard transform

$$egin{aligned} H_1 = egin{bmatrix} 1 \ 1 \end{bmatrix} & H_2 = egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} & \cdots & H_{2^n} = egin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \ H_{2^{n-1}} & -H_{2^{n-1}} \end{bmatrix} \ \mathcal{B}(x,y) = rac{1}{d} \cdot H(Hx \odot Hy) \end{aligned}$$

A parameter ρ is defined that denotes the number of vector pairs bundled in a composite representation χ

$$\chi_{\substack{\rho=1\\ \rho=2}} = \mathcal{B}(x_1, y_1) \qquad \chi_{\rho=2} = \mathcal{B}(x_1, y_1) + \mathcal{B}(x_2, y_2) \qquad \cdots \qquad \chi_{\rho} = \sum_{i=1}^{\rho} \mathcal{B}(x_i, y_i)$$

ρ

The unbinding is defined via an inverse function following the theorem. This will give a symbolic form of unbinding step that retrieves the original component x being searched for, as well as a necessary noise component η° which must exist whenever $\rho > 1$ items are bound together

Proof of Theorem 8.2.1. We start from the identity function $Hx \cdot Hx^{\dagger} = 1$ and thus

$$\begin{split} Hx^{\dagger} &= \frac{1}{Hx}. \text{ Now using Equation 8.2 we get,} \\ \mathcal{B}^{*}(\mathcal{B}(x_{1}, y_{1}) + \dots + \mathcal{B}(x_{\rho}, y_{\rho}), y_{i}^{\dagger}) &= \frac{1}{d} \cdot H((Hx_{1} \odot Hy_{1} + \dots + Hx_{\rho} \odot Hy_{\rho}) \odot \frac{1}{Hy_{i}}) \\ &= \frac{1}{d} \cdot H(Hx_{i} + \frac{1}{Hy_{i}} \odot \sum_{\substack{j=1\\j \neq i}}^{\rho} (Hx_{j} \odot Hy_{j})) = x_{i} + \frac{1}{d} \cdot H(\frac{1}{Hy_{i}} \odot \sum_{\substack{j=1\\j \neq i}}^{\rho} (Hx_{j} \odot Hy_{j})) \quad Lemma 3.1 \\ &= \begin{cases} x_{i} & \text{if } \rho = 1 \\ x_{i} + \eta_{i}^{\circ} & \text{else } \rho > 1 \end{cases} \end{split}$$

- To reduce the noise component, Holographic Reduced Representations (HRR) utilizes a projection step that normalizes inputs in Fourier domain
- While such normalization is not helpful in Hadamard domain, we just apply the Hadamard transformation to the inputs as a projection step

Definition 8.2.2 (Projection). The projection function of x is defined by $\pi(x) = \frac{1}{d} \cdot Hx$ If we apply the Definition 8.2.2 to the inputs in Theorem 8.2.1 then we get

$$\mathcal{B}^*(\mathcal{B}(\pi(x_1),\pi(y_1)) + \dots + \mathcal{B}(\pi(x_\rho),\pi(y_\rho)),\pi(y_i)^{\dagger}) = \mathcal{B}^*(\frac{1}{d} \cdot H(x_1 \odot y_1 + \dots + x_\rho \odot y_\rho),\frac{1}{y_i})$$
$$= \frac{1}{d} \cdot H(\frac{1}{y_i} \odot (x_1 \odot y_1 + \dots + x_\rho \odot y_\rho))$$

Simplification

- \succ By applying the projection step, we get a different noise component η^{π}
- More interestingly, the retrieved output term does not contain any Hadamard matrix
- ➤ Therefore, the initial binding definition is redefined as $\mathcal{B}'(x, y) = x \odot y$ and unbinding as $\mathcal{B}^{*'}(x, y) = x \odot \frac{1}{y}$

$$\begin{split} H(\frac{1}{d} \cdot H(\frac{1}{y_i} \odot (x_1 \odot y_1 + \cdots + x_\rho \odot y_\rho))) &= \frac{1}{y_i} \odot (x_1 \odot y_1 + \cdots + x_\rho \odot y_\rho) \\ &= \begin{cases} x_i & \text{if } \rho = 1 \\ x_i + \sum_{j=1, \ j \neq i}^{\rho} \frac{x_j y_j}{y_i} & \text{else } \rho > 1 \end{cases} \\ &= \begin{cases} x_i & \text{if } \rho = 1 \\ x_i + \eta_i^{\pi} & \text{else } \rho > 1 \end{cases} \end{split}$$

Initialization Condition

- For the binding and unbinding operations to work, vectors need to have an expected value of zero
- Since during unbinding, values close to zero would destabilize the noise component and create numerical instability
- Thus, a Mixture of Normal Distribution (MiND) is defined with an expected value of zero
- But the expected absolute value is greater than zero where U is the Uniform distribution

$$\Omega(\mu, 1/d) = \begin{cases} \mathcal{N}(-\mu, 1/d) & \text{if } \mathcal{U}(0, 1) > 0.5\\ \mathcal{N}(\mu, 1/d) & \text{else } \mathcal{U}(0, 1) \leqslant 0.5 \end{cases}$$

Properties

$$E[x] = 0, E[|x|] = \mu, and E[||x||_2] = \sqrt{\mu^2 d}$$

Noise Reduction

In expectation, it is proved that $\eta^{\pi} < \eta^{\circ}$ which is also verified by the experimental results.

Similarity Augmentation

Theorem 8.2.3 ($\phi - \rho$ Relationship). Given $x_i, y_i \sim \Omega(\mu, 1/d) \forall i \in \mathbb{N} : 1 \leq i \leq \rho$, the cosine similarity ϕ between the original x_i and retrieved vector \hat{x}_i is approximately equal to the inverse square root of the number of vector pairs in a composite representation ρ given by $\phi \approx \frac{1}{\sqrt{\rho}}$

$$\phi = \frac{\sum_{i=1, j\neq i}^{d} x_{i} \cdot \hat{x}_{i}}{\|x_{i}\|_{2} \cdot \|\hat{x}_{i}\|_{2}} = \frac{\sum_{i=1, j\neq i}^{d} x_{i} \cdot \left(x_{i} + \sum_{j=1, j\neq i}^{\rho} \frac{x_{j}y_{j}}{y_{i}}\right)}{\|x_{i}\|_{2} \cdot \|x_{i} + \sum_{j=1, j\neq i}^{\rho} \frac{x_{j}y_{j}}{y_{i}}\|_{2}} = \frac{\sum_{i=1, j\neq i}^{d} x_{i} \cdot x_{i} + \sum_{i=1, j\neq i}^{d} x_{i} \cdot \left(\sum_{j=1, j\neq i}^{\rho} \frac{x_{j}y_{j}}{y_{i}}\right)}{\|x_{i}\|_{2} \cdot \|x_{i} + \sum_{j=1, j\neq i}^{\rho} \frac{x_{j}y_{j}}{y_{i}}\|_{2}}$$
(7)

Employing Properties 3.1 we can derive that $||x_i||_2 = \sqrt{\sum x_i \cdot x_i} = \sqrt{\mu^2 d}$ and $||\frac{x_j y_j}{x_i}|| = \sqrt{\mu^2 d}$. Thus, the square of the $||x_i + \sum_{\substack{j=1, \ j\neq i}}^{\rho} \frac{x_j y_j}{y_i}||_2$ can be expressed as

$$= \|x_i\|_2^2 + \sum_{j=1, \ j \neq i}^{\rho} \left\|\frac{x_j y_j}{y_i}\right\|_2^2 + 2 \cdot \underbrace{\sum_{\alpha}^{d} x_i \left(\sum_{j=1, \ j \neq i}^{\rho} \frac{x_j y_j}{y_i}\right)}_{\alpha} + \underbrace{\sum_{j=1}^{d} \sum_{\substack{l=1 \\ j \neq i}}^{\rho-1} \sum_{\substack{l=1 \\ l \neq j}}^{\rho-1} \frac{x_j y_j}{y_i} \cdot \frac{x_l y_l}{y_i}}_{\beta}$$
(8)

$$= \mu^{2}d + (\rho - 1) \cdot \mu^{2}d + 2\alpha + 2\beta = \rho \cdot \mu^{2}d + 2\alpha + 2\beta$$

Therefore, using Equation 7 and Equation 8 we can write that

$$\mathbf{E}[\phi] = \frac{\mu^2 d + \alpha}{\sqrt{\mu^2 d} \cdot \sqrt{\rho \cdot \mu^2 d + 2\alpha + 2\beta}} \approx \boxed{\frac{1}{\sqrt{\mu^2 d} \cdot \sqrt{\rho \cdot \mu^2 d}}} = \frac{\mu^2 d}{\sqrt{\rho} \cdot \mu^2 d} = \frac{1}{\sqrt{\rho}} \qquad \Box$$

Similarity Augmentation Contd.

HLB in Deep Learning

- Experiments are performed in two deep learning applications using HLB
- In the first application a method called Connectionist Symbolic Pseudo Secrets (CSPS) that leverages binding and unbinding to obfuscate the nature of input and outputs of network using HRR
- The same experiments are performed via the properties of HLB
- Similarly, in the second application, different VSA's are used and compared to perform Extreme Multi Label (XML) classification

Method	Bind $\mathcal{B}(x,y)$	Unbind $\mathcal{B}^{st}(x,y)$	INIT x
HRR	$\mathcal{F}^{-1}(\mathcal{F}(oldsymbol{x})\odot\mathcal{F}(oldsymbol{y}))$	$\mathcal{F}^{-1}(\mathcal{F}(oldsymbol{x}) \oplus \mathcal{F}(oldsymbol{y}))$	$x_i \sim \mathcal{N}(0, 1/d)$
VTB	$V_{oldsymbol{y}} x$	$V_y^{ op} x$	$\tilde{x}_i \sim \mathcal{N}(0,1) \rightarrow x = \tilde{x} / \ \tilde{x}\ _2$
MAP-C	$x \check{\odot} y$	$x \odot y$	$x_i \sim \mathcal{U}(-1, 1)$
MAP-B	$x \odot y$	$x \odot y$	$x_i \sim \{-1, 1\}$
HLB	$x \odot y$	$x \oplus y$	$x_u \sim \{\mathcal{N}(-\mu, 1/d), \ \mathcal{N}(\mu, 1/d)\}$

Experimental Results: CSPS

Mohammad Mahmudul Alam, et. al. "Deploying Convolutional Networks on Untrusted Platforms Using 2D Holographic Reduced Representations", ICML 2022, Baltimore, MD, USA

Connectionist Symbolic Pseudo Secrets (CSPS) Accuracy

DATASET	Dims/ Labels	CSPS + HRR		CSPS + VTB		CSPS + MAP-C		CSPS + MAP-B		CSPS + HLB	
		Top@1	Top@5	Top@1	Top@5	Top@1	Top@5	Top@1	Top@5	Top@1	Top@5
MNIST	$28^2/10$	98.51	_	98.44	_	98.46	_	98.40	_	98.73	_
SVHN	$32^{2'}/10$	88.44	_	19.59	_	79.95	_	92.43	_	94.53	—
CR10	$32^{2}/10$	78.21	_	74.22	_	76.69	_	82.83	_	83.81	—
CR100	$32^2/100$	48.84	75.82	35.87	61.79	56.77	81.52	57.76	84.63	58.82	87.50
MIN	$84^{2}/100$	40.99	66.99	45.81	73.52	52.22	78.63	57.91	82.81	59.48	83.35
GM		67.14	71.26	47.24	67.40	70.89	80.06	75.90	83.72	77.17	85.40

Experimental Results: XML

Extreme Multi-label Classification

- Each class is represented with a unique vector, network learns the composite representation
- Each class label is queried, and cosine similarity is used to identify which labels are present
- Evaluated in terms of normalized discounted cumulative gain (nDCG) and propensity-scored (PS) based normalized discounted cumulative gain (PSnDCG)

DATASET	BIBTEX		DELICIOUS		MEDI	AMILL	EURLEX-4K	
METRICS	nDCG	PSnDCG	nDCG	PSnDCG	nDCG	PSnDCG	nDCG	PSnDCG
HRR VTB MAP-C MAP-B HLB	60.296 57.693 59.280 59.412 61.741	$\begin{array}{r} 45.572 \\ 45.219 \\ 46.092 \\ 46.340 \\ \textbf{48.639} \end{array}$	66.454 63.325 65.376 65.431 67.821	30.016 31.449 31.943 32.122 32.797	83.885 87.232 87.255 86.886 88.064	63.684 66.948 66.886 66.562 67.525	77.225 76.964 72.439 71.128 77.868	30.684 31.180 26.752 26.340 31.526
DATASET	EURLEX-4.3K		WIKI10-31K		Amazon-13K		Delicious-200K	
METRICS	nDCG	PSnDCG	nDCG	PSnDCG	nDCG	PSnDCG	nDCG	PSnDCG
HRR VTB MAP-C MAP-B HLB	84.497 84.663 85.472 85.023 88.204	38.545 38.540 39.233 38.820 43.622	81.068 78.025 80.203 80.238 83.589	9.185 9.645 10.027 10.035 11.869	93.258 92.373 92.013 92.307 93.672	49.642 49.463 48.686 48.812 50.270	44.933 44.092 45.373 45.459 46.331	6.839 6.664 6.862 6.870 6.952

Concluding Remarks

- Proposed a novel VSA called HLB that offers significant benefits for both classical VSA tasks and differentiable systems.
- Additionally, proposed a new initialization condition called Mixture of Normal Distribution (MiND)
- > Mathematically showed the cosine similarity ϕ is approximately equal to the inverse square root of the number of bundled vector pairs ρ
- HLB outperformed other VSAs in both CSPS and XML tasks across all datasets, highlighting its extensive potential in Neuro-symbolic AI

Thank you for your patience Any Questions?

2024