Mixture of Scales: Memory-Efficient Token-Adaptive Binarization for Large Language Models

Dongwon Jo¹, Taesu Kim², Yulhwa Kim^{3*}, Jae-Joon Kim^{3*}

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024.

- Binarization is extreme version of quantization which transforms high-precision weight parameters into 1-bit
- Binarization is effective strategy to reduce the size of LLMs, but, typical binarization techniques show significant performance degradation
- Previous binarization using QAT or PTQ drastically limits the representational capacity of weights, struggling to achieve sufficient accuracy with binarized LLMs
- Previous works effort often compromise the inherent advantages of binarization by introducing high memory overhead
- Training binarized model from scratch requires high training cost and many GPU resources

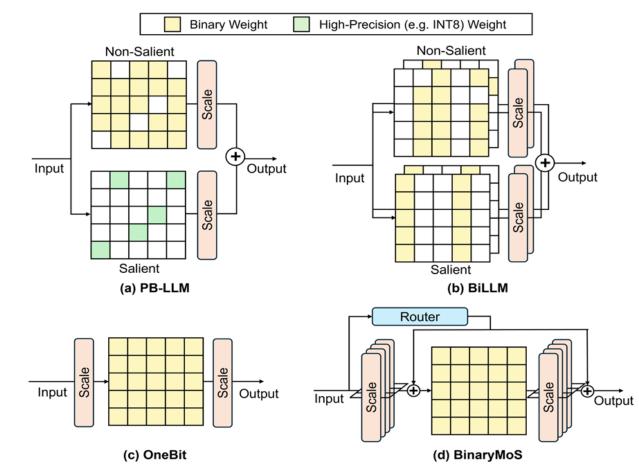
Previous Binarization Methods

PB-LLM

- They maintain salient weight parameters as high-precision values (e.g., Float16 or INT8)
- Index of salient weights is unstructured, requiring mask and indexing information

• BillM

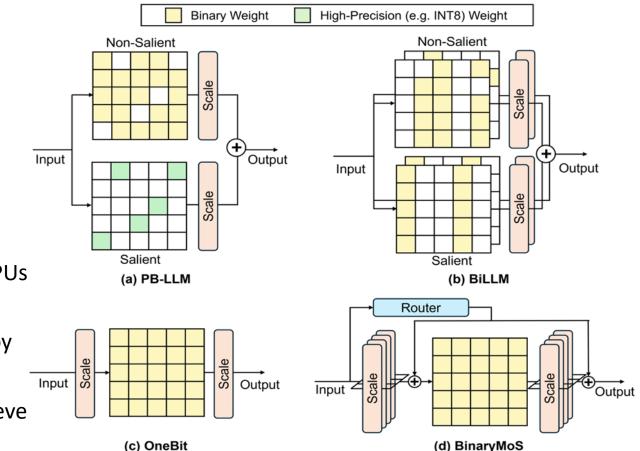
- They use the additional matrix as the residual matrix for salient weights
- For non-salient weight, they categorize weight: concentrated weights close to the mean, and sparse weights



Previous Binarization Methods (cont'd)

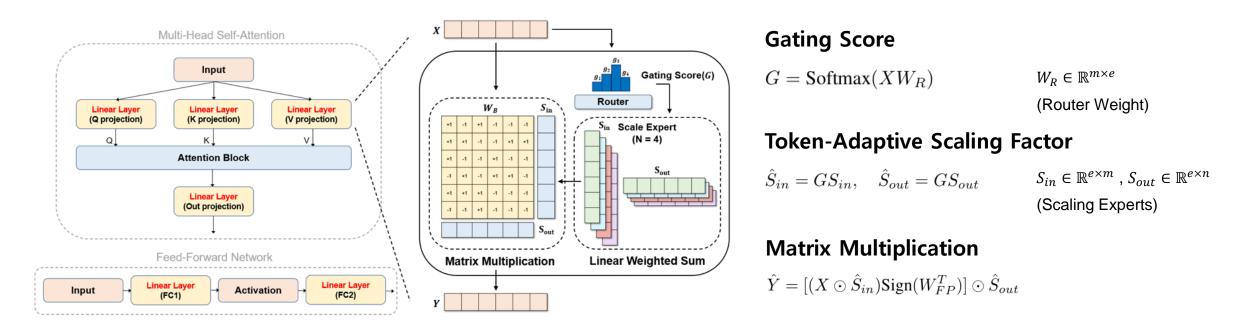
OneBit

- They incorporate scaling factors for both the input and output channel
- They initialize scaling factor, decompose weights into rank-1 by SVD method
- Limitation of Previous Works
 - Not considering acceleration on HW such as GPUs in real scenario
 - Compromising the advantages of binarization by introducing high memory overhead
 - Low representational power, struggling to achieve sufficient accuracy compared to FP16



We propose a novel binarization technique, Mixture of Scales (BinaryMoS)

BinaryMoS: Mixture of Scales for Binarization



- Router computes the **gating score** *G*, which represents the significance of each scaling expert, using input tokens and router weights
- These gating scores are used to linearly combine the scaling experts, resulting in the creation of **token**adaptive scaling factors, \hat{S}_{in} and \hat{S}_{out}
- This Input-dependent method makes token-adaptive scaling factor dynamic scale, increasing representation power with minimal memory and latency overhead

Representational Power of Token Adaptive Scaling Factors

Analysis on Token-Adaptive Scaling Factors

- Router assigns gating score with substantial variation for each expert across token
- While conventional binarization methods with static scaling factors, offer a fixed scaling factor, the BinaryMoS successfully generates a diverse range of scaling factors

Experimental Results

		Perplexity \downarrow (Wikitext2)								
Method	Wbits	OPT-125M	OPT-1.3B	LLaMA-1-7B	LLaMA-1-13B	LLaMA-2-7B	LLaMA-2-13B			
GPTQ	2	660.52	125.29	45.73	15.20	40.23	32.87			
OmniQuant	2	245.47	28.82	9.75	7.84	11.20	8.25			
BinaryMoS	1	36.46	18.45	7.97	7.16	7.88	7.08			
		Perplexity ↓ (C4)								
Method	Wbits	OPT-125M	OPT-1.3B	LLaMA-1-7B	LLaMA-1-13B	LLaMA-2-7B	LLaMA-2-13B			
GPTQ	2	213.60	45.43	27.87	15.15	31.37	26.23			
OmniQuant	2	390.30	33.81	13.01	10.43	15.46	11.06			
BinaryMoS	1	33.13	18.83	9.72	8.81	9.75	8.91			
		Average Zero-shot Accuracy ↑								
Method	Wbits	OPT-125M	OPT-1.3B	LLaMA-1-7B	LLaMA-1-13B	LLaMA-2-7B	LLaMA-2-13B			
GPTQ	2	37.59	40.36	43.75	49.65	43.31	45.03			
OmniQuant	2	36.54	46.43	51.58	56.42	49.54	54.24			
BinaryMoS	1	43.37	49.34	54.48	56.68	54.01	57.09			

Comparison to 2-bit Quantization Methods

- BinaryMoS consistently outperforms other binarization methods and narrows the performance gap with Float16 model
- BinaryMoS even **outperforms 2-bit quantization methods**, despite its lower memory requirement during inference

Model	Method	Wbits	Perplexity ↓		Zero-shot Accuracy ↑						
Model	Method		Wiki2	C4	BoolQ	PIQA	Hella.	WinoG.	ARC-e	ARC-c	Average
OPT-125M	Float16	16	27.65	24.60	55.47	62.02	31.33	50.19	39.98	22.86	43.64
	PB-LLM	1	3233.63	1509.33	37.83	50.60	26.67	50.43	27.02	23.63	36.02
	BiLLM	1	2989.53	1769.26	37.82	50.59	25.75	51.30	27.65	23.63	36.12
	OneBit	1	39.45	35.58	61.92	60.01	27.01	50.43	35.81	21.84	42.84
	BinaryMoS	1	36.46	33.13	61.83	60.17	27.16	51.38	36.74	22.95	43.37
	Float16	16	14.62	14.72	57.82	72.42	53.70	59.51	50.97	29.52	53.99
	PB-LLM	1	272.83	175.42	62.17	54.24	27.25	50.27	27.98	23.72	40.94
OPT-1.3B	BiLLM	1	69.45	63.92	61.92	59.52	33.81	49.32	34.38	22.35	43.55
	OneBit	1	20.36	20.76	57.85	66.53	39.21	54.61	42.80	23.97	47.50
	BinaryMoS	1	18.45	18.83	60.34	68.66	41.99	53.99	44.87	26.19	49.34
	Float16	16	5.68	7.08	73.21	77.42	72.99	66.85	52.53	41.38	64.06
	PB-LLM	1	198.37	157.35	60.51	53.53	27.23	49.17	27.48	26.02	40.66
LLaMA-1-7B	BiLLM	1	41.66	48.15	62.23	58.65	34.64	51.14	33.08	25.68	44.24
	OneBit	1	8.48	10.49	62.50	70.40	54.03	55.32	41.07	30.88	52.36
	BinaryMoS	1	7.97	9.72	64.59	71.82	58.18	58.88	42.09	31.31	54.48
	Float16	16	5.09	6.61	68.47	79.05	76.24	70.17	59.85	44.54	66.39
	PB-LLM	1	35.83	39.79	62.17	58.70	33.97	52.17	31.86	23.63	43.75
LLaMA-1-13B	BiLLM	1	14.56	16.67	62.53	68.17	52.24	59.43	41.91	29.94	52.37
	OneBit	1	7.65	9.56	63.30	71.98	60.61	59.43	42.85	32.42	55.10
	BinaryMoS	1	7.16	8.81	63.82	73.88	64.05	60.93	44.28	33.11	56.68
LLaMA-2-7B	Float16	16	5.47	6.97	71.07	76.87	72.95	67.16	53.45	40.78	63.71
	PB-LLM	1	76.75	85.92	62.17	52.82	26.87	50.11	26.89	24.31	40.53
	BiLLM	1	27.72	36.34	62.14	59.19	35.18	53.11	34.22	26.54	45.06
	OneBit	1	8.60	10.74	63.06	70.40	54.24	56.67	40.82	29.35	52.42
	BinaryMoS	1	7.88	9.75	65.02	71.55	59.41	56.18	41.84	30.03	54.01
	Float16	16	4.88	6.47	68.99	79.05	76.62	69.77	57.95	44.20	66.10
	PB-LLM	1	155.25	151.15	37.82	53.26	28.89	49.48	28.28	23.72	36.91
LLaMA-2-13B	BiLLM	1	20.71	27.19	62.20	62.51	38.05	56.35	40.69	27.73	47.92
	OneBit	1	7.56	9.67	65.66	71.60	60.07	56.91	45.76	31.74	55.29
	BinaryMoS	1	7.08	8.91	66.12	73.72	63.80	58.98	45.71	33.19	57.09

Comparison to Other Binarization Methods

Memory Efficiency and Latency

Model	Float16	PB-LLM	BiLLM	OneBit	BinaryMoS
LLaMA-1/2-7B	13.51 GB	2.78 GB (4.86×)	2.28 GB (5.93×)	1.37 GB (9.86×)	1.40 GB (9.65×)
LLaMA-1/2-13B	26.20 GB	5.02 GB (5.22×)	4.06 GB (6.45×)	2.29 GB (11.44×)	2.33 GB (11.24×)

Comparison of Memory Footprint

- BinaryMoS significantly reduces the memory footprint of models, achieving compression ratios ranging from 9.65 × to 11.24 × with minimal memory overhead
- Despite incorporating additional components for scaling experts, BinaryMoS increases by only 2% compared to OneBit

Model Config		LLaMA-1/2-7	В	LLaMA-1/2-13B			
Weight Size	4096 × 4096	4096 × 11008	11008 × 4096	5120 × 5120	5120 × 13824	13824 × 5120	
Float16	68.2	151.7	143.5	95.6	224.1	213.6	
PB-LLM	96.1	177.5	168.3	122.7	243.7	234.7	
BiLLM	87.1	96.4	104.2	95.2	124.2	131.0	
OneBit	32.7	33.7	34.9	33.4	41.4	42.6	
BinaryMoS	34.5	36.9	37.0	35.6	43.4	44.5	

Latency (μsec) of Linear Layer

- BinaryMoS reduces latency compared to Float16 models by up to **5.2x**
- This demonstrates that the BinaryMoS improves performance in terms of perplexity and accuracy with minimal latency overhead

- BinaryMoS is a novel binarization technique designed to **enhance the representation capability** of binarized LLMs while **preserving the fundamental advantage of binarization**
- BinaryMoS adopts the mixture of scales approach to **dynamically adjust the scaling factors** of binary weight values in a **token-adaptive manner**
- This approach effectively mitigates information loss associated with binarization with **minimal memory and latency overhead**
- Our experimental results demonstrate that BinaryMoS surpasses existing binarization approaches and even outperforms 2-bit quantization methods in both perplexity and zero-shot tasks