
Speculative Decoding of LLM: CTC-drafter

1



Speculative Decoding of LLM

◼ Large language models(LLM) possess many advantages over traditional language models.

◼ However, LLM also faces disadvantages such as slower inference speed and higher training difficulty 

due to the larger number of parameters.

◼ Improving from the perspective of decoding strategies: speculative decoding.

The development chart of speculative decoding from：Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding



Basic Paradigm of Speculative Decoding

◼ Compared to autoregressive decoding, speculative decoding utilizes auxiliary models to achieve 

multi-token decoding in one inference step.

Figure from： Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding

◼ The autoregressive decoding process(left):        

Only one token is decoded per step

◼ The speculative decoding process(right) :   

Smaller model is used to predict subsequent tokens in 

advance (Efficiently Draft). Draft tokens are sent to 

the LLM for verification (Verify in Parallel).    

Multiple tokens are decoded per step



Medusa

◼ Existing speculative decoding works: take Medusa as an example

• Draft:                                                                                                                        

Several independent linear layers as auxiliary model(Medusa head)

• Verify:                                                                                                              

Organizing candidate tokens as tree structure(token tree verification)

Analysis：

• Insufficient representation ability with linear layers.

• Prediction of candidate tokens at different positions is independent, 

without considering contextual information.

• Fixed method to combine candidate sequences lacks generality across 

different generation tasks.

Figure from：Medusa: Simple framework for accelerating llm generation with multiple decoding heads.



CTC-drafter： More accurate candidate generation based on CTC

CTC inference：

• Auxiliary model provides probability distribution at each position 

• Combine and generate multiple candidate sequences.

• Remove blank ε and duplicate tokens(CTC blank-collapse)  → final sequence.

CTC loss function：

• Given input 𝑋, calculate the probability of a specific final sequence 𝑌:             

Sum probabilities of all paths 𝐴 that produces sequence 𝑌 after CTC-collapse ：

𝑃 𝑌 𝑋 = σ𝐴∈𝐴𝑋,𝑌 𝑃(𝐴)

• The product of each tokens’ probabilities  on the path: 𝑃 𝐴 = ς𝑡=1
𝑇 𝑝𝑡(𝑎𝑡|𝑋)，

𝐴 = 𝑎1, 𝑎2, 𝑎3………𝑎𝑡, 𝑎𝑡+1……𝑎𝑛

• The final training objective ：𝑚𝑎𝑥σ(𝑋,𝑌)∈𝐷 𝑃 𝑌 𝑋

Figure from：Hannun, "Sequence Modeling with CTC", Distill, 2017

. 



CTC-drafter：More accurate candidate generation based on CTC

Training

• Attention Draft Module 

Replace linear layers with transformer layers.

→ better align with the base model.

• CTC Loss：                                  

Replace Cross-Entropy Loss with CTC Loss        

→ Traverse all possible sequences and

enhance contextual information based on

dynamic programing.



CTC-drafter：More accurate candidate generation based on CTC

Inference

• Combinations：

① LLM generate the first token. Select 

the top k tokens of highest probability

for following positions.                           

② Organize these tokens as tree 

structure described in [1].

• CTC Transform Module：      

① Apply the blank-collapse  as 

described in [2] and obtain Candidates.

        ② Sent to LLM for validation.

[1] Miao X, Oliaro G, Zhang Z, et al. SpecInfer: Acceerating Generative Large Language Model  Serving with Tree-based 

Speculative Inference and Verification.

[2] Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with 

recurrent neural networks



CTC-drafter：More accurate candidate generation based on CTC

• Choose Vicuna-7B, 13B, and 33B as 

the LLMs to be accelerated.

• γ: The average speedup ratio 

relative to vanilla method.

• β: The average number of accepted 

tokens per decoding step.

• MT-bench, GSM8K：Evaluation 

benchmark datasets.

CTC-drafter achieves higher speedup ratios (γ) by generating higher quality candidate tokens (β)



CTC-drafter：More accurate candidate generation based on CTC

• Extraction：

CTC-Vicuna perform 

the best on coding

category.

• Roleplay：               

CTC-Vicuna performs 

relatively poorly on role-

playing category.        

Lack of questions on this 

category in the training 

dataset.



CTC-drafter：More accurate candidate generation based on CTC

CTC-drafter Medusa

• More complex auxiliary model structures are introduced, inevitably introducing additional draft latency. 

• Reducing the overall decoding steps of LLM → Still more significant inference acceleration.


	幻灯片 1: Speculative Decoding of LLM: CTC-drafter
	幻灯片 2: Speculative Decoding of LLM
	幻灯片 3: Basic Paradigm of Speculative Decoding
	幻灯片 4: Medusa
	幻灯片 5: CTC-drafter： More accurate candidate generation based on CTC
	幻灯片 6: CTC-drafter： More accurate candidate generation based on CTC
	幻灯片 7: CTC-drafter： More accurate candidate generation based on CTC
	幻灯片 8: CTC-drafter： More accurate candidate generation based on CTC
	幻灯片 9: CTC-drafter： More accurate candidate generation based on CTC
	幻灯片 10: CTC-drafter： More accurate candidate generation based on CTC

