Unleashing Multispectral Video's Potential in Semantic Segmentation: A Semi-supervised Viewpoint and New UAV-View Benchmark

Wei Ji^{1,2*}, Jingjing Li^{1*}, Wenbo Li³, Yilin Shen³, Li Cheng¹, Hongxia Jin³

¹University of Alberta ²Yale University ³Samsung AI Center-Mountain View

Background Multispectral Video Semantic Segmentation (MVSS)

Multispectral Video Semantic Segmentation (MVSS) focuses on RGBT video inputs for semantic segmentation tasks. With the rapid advancements in RGB and thermal imaging-known as multispectral imaging-MVSS has gained significant attention. Notably, it offers promising opportunities to enhance segmentation performance under challenging visual conditions, such as low light or overexposure. The new task opens possibilities for applications that require a holistic view of video segmentation under challenging conditions, e.g., autonomous safe driving, nighttime patrol, and fire rescue.

Daytime

Nighttime and overexposure

New MVUAV Dataset

Multispectral Video Semantic Segmentation in UAV Videos

We introduce MVUAV, a new MVSS dataset containing a wide range of RGB-T videos captured by Unmanned Aerial Vehicles (UAVs) from an oblique bird's-eye viewpoint. This viewpoint offers a complementary perspective to the eye-level viewpoint adopted by existing MVSeg dataset.

(a) Data Acquisition

(c) **MVUAV** Dataset

Features:

- (a) Viewpoint diversity of the existing MVSeg dataset and the new MVUAV dataset.
- (b) & (c) Representative samples from the MVSeg & MVUAV datasets, where RGB videos, thermal videos, and the corresponding semantic annotations are visualized

999992

UNIVERSITY OF

ע אזר זתמ נים ים נ

Table 1: Statistics of various semantic segmentation datasets in diverse modalities. 'Surv.', '#Cls' and 'Anno.' are the shorthand for surveillance, the number of classes and annotation density, respectively.

Dataset	Year	Color	Infrared	Video	UAV	Capture	#Vids(Frames)	#GTs	Resolution	#Cls	%Anno.
Cityscapes [1]	2016	 ✓ 	X	1	Х	Car	- (150k)	5,000	2048×1024	30	97.10%
CamVid [82]	2009		X	\checkmark	X	Car	5 (40k)	701	960×720	32	96.20%
UAVid [83]	2020		X	1	1	Drone	42 (38k)	420	3840×2160	8	82.69%
SODA [84]	2020	X	1	X	X	Pedestrian	-	2,168	640×480	21	79.73%
SCUT-Seg [85]	2021	X	\checkmark	X	X	Car	-	2,010	720×576	10	56.50%
MFNet [46]	2017	1	1	X	X	Car	-	1,569	640×480	9	7.86%
PST900 [47]	2020		\checkmark	X	X	Robot	-	894	1280×720	5	3.02%
SemanticRT [45]	2023		\checkmark	X	X	Surv.	-	11,371	1280×1024	13	21.27%
FMB [86]	2023		\checkmark	X	X	Car	-	1,500	800×600	15	98.16%
CART [87]	2024		\checkmark	X	✓	Drone	-	2,282	960×600	11	99.98%
MVSeg [21]	2023	1	1	1	X	Car/Surv.	738 (53k)	3,545	480×640	26	98.96%
MVUAV	-	√	\checkmark	\checkmark	\checkmark	Drone	413 (54k)	2,183	1920×1080	36	99.18%

Proposed Method for Semi-MVSS SemiMV - Cross-collaborative Consistency Learning

This figure illustrates the overview of proposed method. The C3L loss aims to learn from unlabeled RGB-Thermal pairs. The DMR is responsible for integrating temporal information from the denoised memory bank to update query features. A dual-C3L loss is further applied to regularize updated query features. Finally, a segmentation head predicts the final mask.

Experiments

RGB Frames	TIR Frames	SupOnly	UniMatch	IFR	MVNet	Ours	GTs

Table 2: Quantitative evaluation on the MVSeg dataset SupOnly stands for the model trained on the labeled data.

(26, 140)(228,1119 (54.282)(111.561)SupOnly (RGB) MT [22] CCT [23] 23.81 CPS [25] UniMatch [24] 24.73 30.47 45.42 Accel [77] (Video) IFR [80] SupOnly (RGBT MVNet [21] 24.70 30.32 39.89 46.08 25.48 34.12 SemiMV (Ours) 43.04 49.73

Table 4: Ablation study of the proposed SemiMV framework

Methods	RGB	mIoU				
RGB	 ✓ 		\checkmark			35.79
RGB-Thermal	√	✓	✓			36.88
+C3L	 ✓ 	✓	✓	✓		40.73
+DMR	1	\checkmark	✓	\checkmark	\checkmark	42.39
+Dual-C3L	✓	✓	✓	✓	✓	43.04

Table 3: Quantitative evaluation on the MVUAV dataset

Method	(23,91)	(40,184)	(70,365)	(141,732)
SupOnly (RGB)	10.09	13.47	20.07	26.25
MT [22]	11.33	15.89	23.02	27.83
CCT [23]	11.75	16.11	23.72	28.71
CPS [25]	12.55	16.70	24.01	29.09
UniMatch [24]	13.36	17.21	24.10	29.21
Accel [77] (Video)	11.23	14.69	21.45	27.70
IFR [80]	13.11	17.03	24.91	29.87
SupOnly (RGBT)	11.28	14.88	21.31	27.60
MVNet [21]	13.07	16.86	23.36	29.77
SemiMV (Ours)	15.10	20.04	26.52	32.23

