

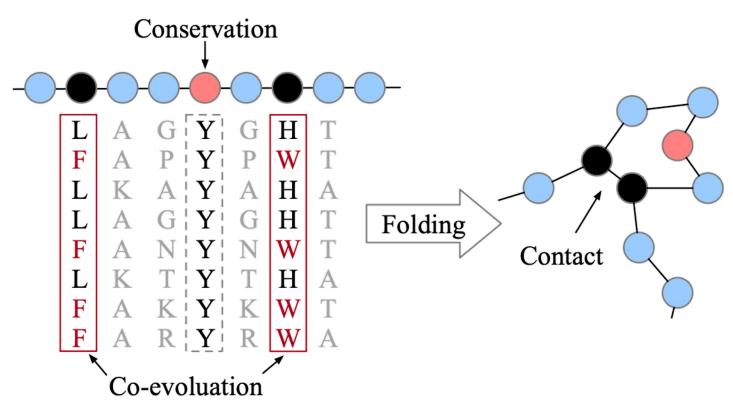
MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training

Bo Chen*, Zhilei Bei*, Xingyi Cheng, Pan Li, Jie Tang, Le Song Tsinghua University, BioMap Research, MBZUAI

https://github.com/THUDM/MSAGPT

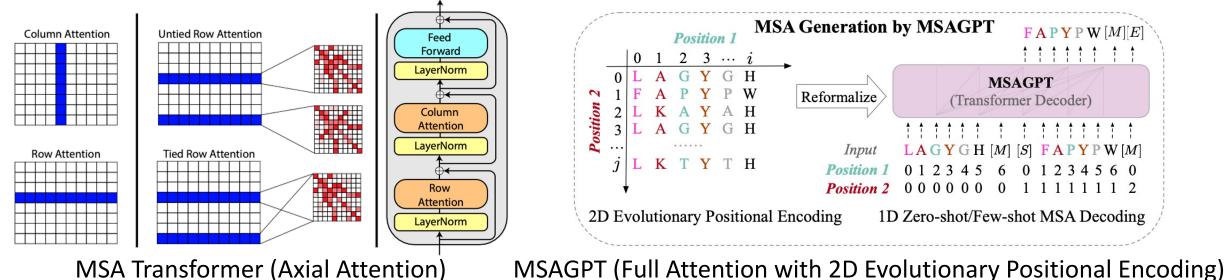
Multiple sequence alignment (MSA) facilitates protein structure prediction (PSP)

- Current PSP models rely on MSA for high accuracy
 - AlphaFold
 - RoseTTAFold
- "Orphan": 1/5 of all metagenomic proteins & 11% of eukaryotic proteins lack sequence homologs, compromising PSP accuracy

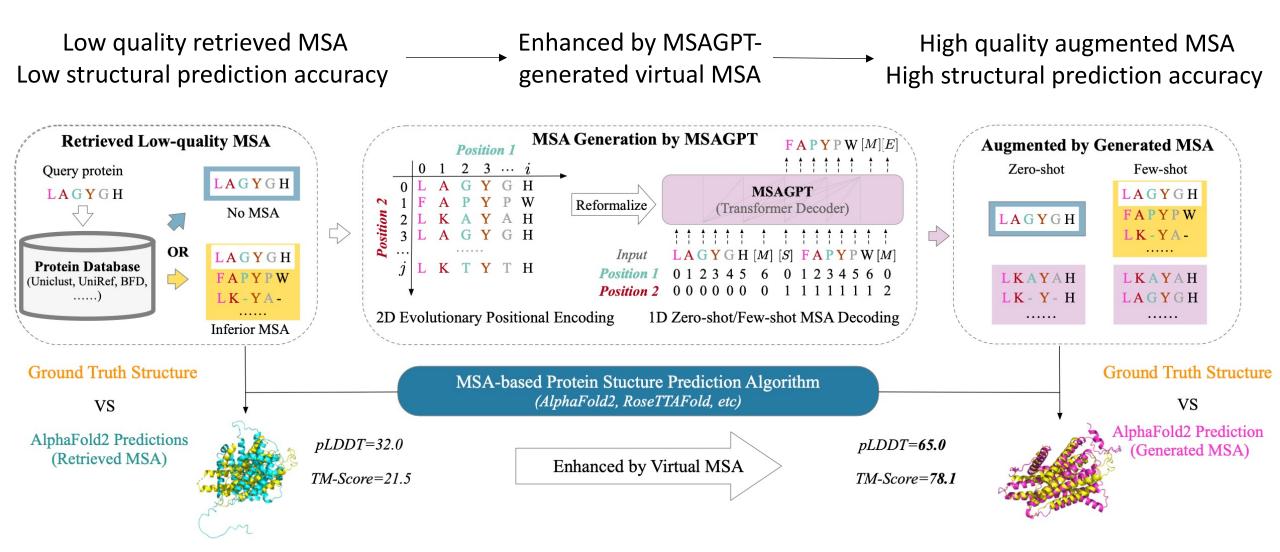


A simple yet effective decoding framework

- Previous MSA-based PLMs usually adopt Axial Attention
 - Constrained information fusion: Only allow row- or column-wise
 - Low Efficiency: Sequential attention in a transformer block
- We propose the 2D Evolutionary Position Encoding
 - To relax the co-evolutionary information modeling from constrained attention flows to the 2D positional encoding
 - Re-formalizes MSA generation as a 1D sequence generation task, enables MSAGPT to conduct zero- or few-shot MSA generation under a flexible in-context learning framework



Generate virtual MSA to solve the problem



Learning from AlphaFold2 feedback

Post-training to alleviate the hallucination scene of MSA generation

- **RFT stage:** First fine-tune the model using high-quality natural MSA
- DPO stage: Then Use AlphaFold2 as a reward model and further fine-tune based on its feedback

$$L_{ce} = \mathbb{E}_{\mathbf{M}^{f}} \begin{bmatrix} \sum_{i=0}^{N \times L} -\log p(\mathbf{M}_{i}^{f} | \mathbf{M}_{\leq i}^{f}, \theta) \end{bmatrix} L_{\text{DPO}} = \mathbb{E}_{(Q, m_{w}, m_{l}) \in \mathcal{D}_{\text{DPO}}} \begin{bmatrix} -\log \sigma \left(\beta \log \frac{\pi_{\theta}(m_{w} | Q)}{\pi_{\text{ref}}(m_{w} | Q)} - \beta \log \frac{\pi_{\theta}(m_{l} | Q)}{\pi_{\text{ref}}(m_{l} | Q)} \right) \end{bmatrix}$$

$$Loss calculation$$

$$MSA \text{ Fine-tune with RFT} \text{ Fine-tune with RFT} \text{ RFT Model} \text{ Fine-tune with DPO} \text{ DPO Model}$$

$$data \quad \text{ generated} \quad \text{ acquisition} \text{ fine-tune MSA} \text{ alphaFold2} \text{ for an } \text{ acquisition} \text{ acquisition} \text{ Dataset} \text{ acquisition} \text{ acquisition} \text{ Dataset} \text{ acquisition} \text{ begin{subarray}{c} \mu \in (Q, m_{i}) | (\mathbb{I}_{acc}(Q, m_{i}) - \mathbb{I}_{acc}(Q, -)) > \theta_{2} \} \mathcal{D}_{\text{DPO}} = \{(Q, m_{w}, m_{l}) | (\mathbb{I}_{acc}(Q, m_{w}) - \mathbb{I}_{acc}(Q, m_{l})) > \theta_{3} \}$$

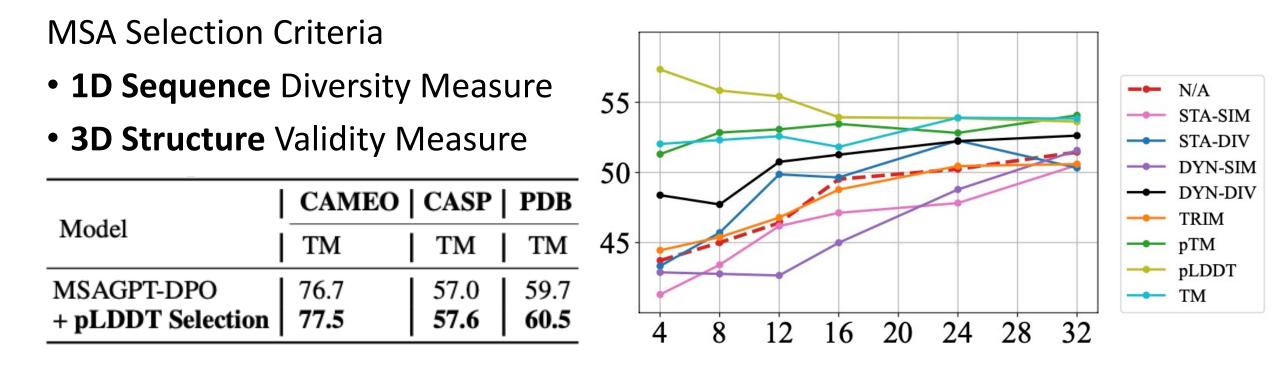
Experimental Result

- Protein Structure Prediction in low-MSA cases
 - Natural MSA-scarce benchmark: low retrieved MSA (<20) from uniclust30
 - **Zero-shot**: only use the generated MSA
 - **Few-shot**: Retrieved low-quality MSA + generated MSA

		CAMEO (avg. Depth = 8.5)				CASP (avg. Depth = 4.6)				PDB (avg. Depth = 2.6)			
	Model	Zero-Shot		Few-Shot		Zero-Shot		Few-Shot		Zero-Shot		Few-Shot	
		pLDDT	ТМ	pLDD1	TM	pLDD7	Г ТМ	pLDD	Г ТМ	pLDD	Т ТМ	pLDD1	TM
	AF2 MSA	63.8	55.4	77.4	71.4	44.0	32.6	54.2	44.1	55.2	45.6	61.0	52.3
w/ virtual MSA •	MSA-Aug.	67.7	59.2	77.4	72.1	56.8	36.6	63.4	46.3	61.9	49.8	66.0	55.3
	EvoGen	66.1	60.3	78.6	75.3	48.2	38.4	55.1	48.5	57.6	49.5	62.8	55.4
	MSAGPT	70.8	61.4	80.8	75.2	59.0	39.8	65.4	51.0	68.6	53.4	71.3	59.6
	+ RFT	68.0	60.5	79.8	76.4	56.8	40.2	64.0	53.6	66.8	53.4	70.3	60.1
	+ DPO	68.9 (+3.1)	62.7 (+2.4)	80.2 (+2.2)	76.7 (+1.4)	54.2 (+2.2)	43.7 (+5.3)	62.7 (+2.0)	57.0 (+8.5)	64.5 (+6.7)	53.6 (+3.8)	68.0 (+5.3)	59.7 (+4.7)

The post-training process significantly reduced hallucinations (Low Predictive metric) generated by the model and improved its performance (High Golden Metric).

Rethinking the MSA Selection Strategy



Sequence Diversity + Structure Validity → Informative MSA

Transfer Learning on Other Tasks

 Fine-tune MSA Transformer & task-specific head w/ or w/o virtual MSA generated by DPO model:

	Prot	ein	Protein			
	Struc	ture	Func	tion		
(L		γλ]		
	CtP	SsP	LocP	MIB		
Model	ACC	ACC	ACC	ACC		
w/o Virtual MSA w/ Virtual MSA	11.6 13.1	66.5 69.0	58.3 56.4	57.5 60.3		

Incorporating MSA from MSAGPT > Using single sequence only

TL;DR:

Employing a 2D evolutionary positional encoding scheme and learning from AlphaFold2 Feedback, **MSAGPT** generates constructive virtual MSA to enable accurate protein structure predictions in situations where natural co-evolutionary information is scarce

Code Repo: https://github.com/THUDM/MSAGPT