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Multiple sequence alignment (MSA) facilitates 
protein structure prediction (PSP) 

• Current PSP models rely on 
MSA for high accuracy
• AlphaFold
• RoseTTAFold

• “Orphan”: 1/5 of all 
metagenomic proteins & 
11% of eukaryotic proteins 
lack sequence homologs, 
compromising PSP accuracy



• Previous MSA-based PLMs usually adopt Axial Attention
• Constrained information fusion: Only allow row- or column-wise
• Low Efficiency：Sequential attention in a transformer block

• We propose the 2D Evolutionary Position Encoding
• To relax the co-evolutionary information modeling from constrained attention flows to the 

2D positional encoding
• Re-formalizes MSA generation as a 1D sequence generation task, enables MSAGPT to 

conduct zero- or few-shot MSA generation under a flexible in-context learning framework

MSA Transformer (Axial Attention) MSAGPT (Full Attention with 2D Evolutionary Positional Encoding)

A simple yet effective decoding framework



Low quality retrieved MSA
Low structural prediction accuracy 

Enhanced by MSAGPT-
generated virtual MSA

High quality augmented MSA
High structural prediction accuracy 

Generate virtual MSA to solve the problem



Learning from AlphaFold2 feedback
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Post-training to alleviate the hallucination scene of MSA generation
• RFT stage: First fine-tune the model using high-quality natural MSA
• DPO stage: Then Use AlphaFold2 as a reward model and further fine-tune based on its feedback



Experimental Result
• Protein Structure Prediction in low-MSA cases

• Natural MSA-scarce benchmark: low retrieved MSA (<20) from uniclust30
• Zero-shot: only use the generated MSA
• Few-shot:  Retrieved low-quality MSA + generated MSA

The post-training process significantly reduced hallucinations (Low Predictive metric) 
generated by the model and improved its performance (High Golden Metric).

w/ virtual MSA



MSA Selection Criteria
• 1D Sequence Diversity Measure
• 3D Structure Validity Measure

Rethinking the MSA Selection Strategy 

Sequence Diversity + Structure Validity → Informative MSA



• Fine-tune MSA Transformer & task-specific head w/ or w/o virtual MSA 
generated by DPO model:

Protein
Structure

Protein
Function

Transfer Learning on Other Tasks 

Incorporating MSA from MSAGPT > Using single sequence only



TL;DR:
Employing a 2D evolutionary positional encoding scheme

and learning from AlphaFold2 Feedback,
MSAGPT generates constructive virtual MSA

to enable accurate protein structure predictions
in situations where natural co-evolutionary information is scarce

Code Repo: https://github.com/THUDM/MSAGPT

https://github.com/THUDM/MSAGPT

