

Multi-Stage Predict+Optimize for (Mixed Integer) Linear Programs

Xinyi Hu¹, Jasper C.H. Lee², Jimmy H.M. Lee¹, Peter J. Stuckey³

- 1. The Chinese University of Hong Kong
 - 2. University of California, Davis
 - 3. Monash University

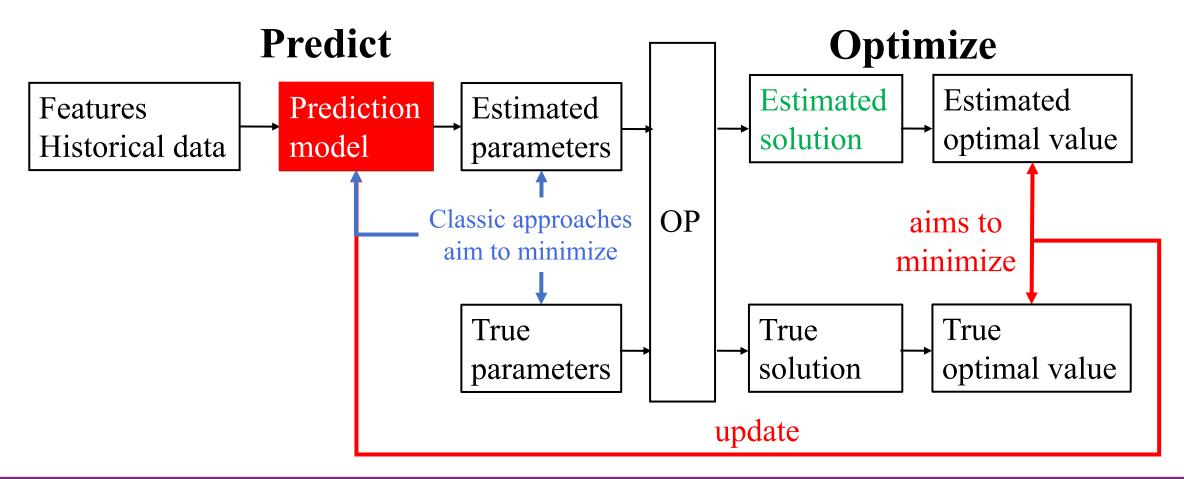
Problem Setting

Aim to Solve: Optimization problems (OPs) with unknown parameters

Given: related information of unknown parameters

- Features
- Historical data (features, true parameters)

Predict unknown parameters and solve the OP


Predict+Optimize

[Elmachtoub and Grigas, Management Science 2022]

Pipeline: Predict+Optimize

Goal

Good estimated solutions under true parameters

Motivation

Motivation

- Prior frameworks: *all* unknown parameters are *revealed simultaneously*
- Excluding applications
 - Unknown parameters are gradually released
 - New decisions need to be made across many stages

Our goal: OPs with gradually revealed unknown parameters

Motivating Scenario

OP with *gradually revealed* unknown parameters

Nurse rostering problem:

Every Wednesday, make nurses schedule for the next week (5 days)

Min: total costs for hiring nurses

Subject to: meet patients' demands

Unknown

Hospital:

make weekly schedule under *unknown patients' demands* $\boldsymbol{\theta} = (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5) \in \mathbb{R}^5$

Appointment system

Very unfriendly to patients

Reservations closing at some time points

Prior works':

reservations for the whole next week are closed this Sunday

Contributions

Motivation

• Prior frameworks: *all* unknown parameters are *revealed simultaneously*

Contributions

- Multi-Stage Predict+Optimize Framework
 - The *first* P+O framework for OPs with *gradually revealed* unknown parameters
- Three End-to-End Training Algorithms

[Contribution 1] Multi-Stage Predict+Optimize Framework

Predicted demands

$$\widehat{\boldsymbol{\theta}}^{(0)} = \left(\widehat{\theta}_1^{(0)}, \dots, \widehat{\theta}_5^{(0)}\right)$$

True demands (newly revealed)

True demands (previously revealed)

None

None

Decisions

Stage 0 solution $\hat{x}^{(0)}$:

Solve original OP using *predictions* $\widehat{\boldsymbol{\theta}}^{(0)}$

Rest
Work

Nurse ID	Mon	Tue	Wed	Thur	Fri
1					
2					
3					

Stages (Time points)

Stage 0 (This Wednesday)

More patient-friendly setting:

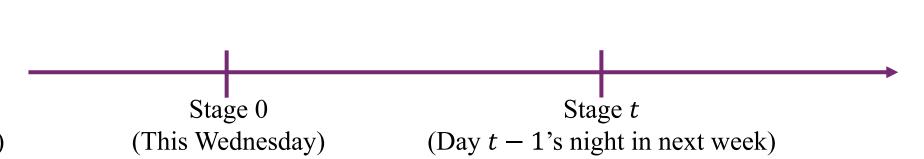
- Reservations are closed the day before each working day
- Update future predictions and future schedule everyday

[Contribution 1] Multi-Stage Predict+Optimize Framework

Predicted demands

 $\widehat{\boldsymbol{\theta}}^{(t)} = (\widehat{\theta}_{t+1}^{(t)}, \dots, \widehat{\theta}_{5}^{(t)})$: new predictions for the Day t+1 and after

True demands (newly revealed)


True demands (previously revealed)

Decisions

Rest Work

Stages (Time points) θ_t : patient demand for the next day, i.e., the Day t

 $\theta_1, \dots, \theta_{t-1}$: patient demands for the previous t-1 days already reveal

[Contribution 1] Multi-Stage Predict+Optimize Framework

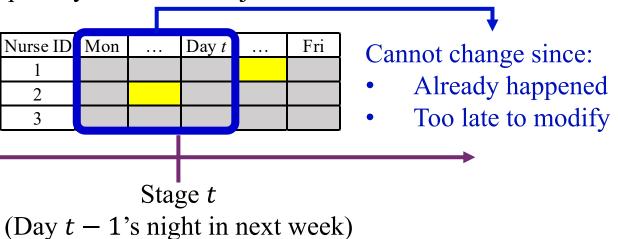
Predicted demands

True demands (newly revealed)

True demands (previously revealed)

Decisions

Stages (Time points)


Stage t solution $\hat{x}^{(t)}$:

Stage 0

(This Wednesday)

Solve Stage t OP using revealed demands $\theta_1, \dots, \theta_t$ and new predictions $\widehat{\boldsymbol{\theta}}^{(t)}$

- Stage *t* OP modifies the original OP by:
 - Adding constraints that the first t day's schedule cannot be changed
 - Adding a penalty term to the objective

[Contribution 2] End-to-End Training Algorithms

Contributions

- Multi-Stage Predict+Optimize Framework
 - The *first* P+O framework for OPs with *gradually revealed* unknown parameters
- Three End-to-End Training Algorithms
 - Baseline:
 - A straightforward generalization of the prior work [Hu et al., NeurIPS 2023]
 - Only trains a *single neural network* in Stage 0
 - Sequential Coordinate Descent (SCD)
 - Parallel Coordinate Descent (PCD)

Core idea:

Trains one neural network (NN) and update predictions *per stage*

Key Experiment Results

Method list:

Proposed

- Baseline
- *SCD*
- *PCD*

BAS: Best results obtained Among allStandard regression methods

Evaluation:

"Win rate" tables: the number of simulations where the proposed beat BAS

Price group	Stage num	Baseline beats BAS	SCD beats BAS	PCD beats BAS
I over profit	4	93.33%	96.67%	86.67%
Low-profit	12	73.33%	100.00%	90.00%
High-profit	4	66.67%	96.67%	73.33%
	12	76.67%	100.00%	80.00%

Production and sales problem.

Capital	Stage num	Transaction factor	Baseline beats BAS	SCD beats BAS	PCD beats BAS
25	4	0.01	53.33%	86.67%	73.33%
		0.05	66.67%	90.00%	86.67%
		0.1	70.00%	93.33%	90.00%
	12	0.01	66.67%	93.33%	83.33%
		0.05	80.00%	96.67%	93.33%
		0.1	83.33%	100.00%	96.67%
50	4	0.01	60.00%	80.00%	66.67%
		0.05	66.67%	93.33%	83.33%
		0.1	70.00%	96.67%	90.00%
	12	0.01	70.00%	83.33%	83.33%
		0.05	73.33%	90.00%	86.67%
		0.1	76.67%	100.00%	90.00%

Investment problem

Extra nurse payment	Baseline beats BAS	SCD beats BAS	PCD beats BAS
15	70.00%	70.00%	70.00%
20	73.33%	86.67%	80.00%
25	73.33%	96.67%	83.33%
30	73.33%	86.67%	76.67%

Nurse rostering problem

Takeaways: Solution Quality

- SCD outperforms BAS in almost all simulations
- PCD and Baseline outperform BAS in most simulations

Contributions

- Multi-Stage Predict+Optimize Framework
 - The first P+O framework for OPs with gradually revealed unknown parameters
- Three End-to-End Training Algorithms
 - Baseline
 - Sequential Coordinate Descent
 - Parallel Coordinate Descent

xyhu@cse.cuhk.edu.hk