

Frieren:

Efficient Video-to-Audio Generation Network with Rectified Flow Matching

Yongqi Wang, Wenxiang Guo, Rongjie Huang, Jiawei Huang, Zehan Wang, Fuming You, Ruiqi Li, Zhou Zhao Zhejiang University

Background: Video-to-Audio (V2A) Generation

- Generate semantically relevant and temporally aligned audio from video frames.
- Task Focus of V2A
 - Audio quality: the generated audio should have good perceptual quality
 - **Temporal alignment:** the generated audio should not only match the content but also align temporally with the video frames.
 - Generation efficiency: the model should be efficient in terms of generation speed and resource utilization.

Our Contribution

- Combining rectified flow matching and feed-forward transformer vector field estimator for higher quality.
- Using channel-wise cross-modal feature fusion for better temporal alignment with simple design.
- Combining reflow and one-step distillation for higher generation efficiency.

Basic Principle

ODE: $d\mathbf{x} = \mathbf{u}(\mathbf{x}, t \mid \mathbf{c})dt, t \in [0, 1]$

Rectified flow matching objective: $\|\boldsymbol{v}(\boldsymbol{x},t \mid c;\theta) - (\boldsymbol{x}_1 - \boldsymbol{x}_0)\|^2$

Model Architecture

Here we use the network in the figure to sample compressed VAE latent of spectrogram conditioned on visual features.

The visual features and point x are processed by some shallow layers and then concatenated along the channel dimension to realize cross-modal feature fusion, achieving good temporal alignment.

CFG, Reflow and Distillation

CFG:
$$\boldsymbol{v}_{CFG}(\boldsymbol{x}, t \mid \boldsymbol{c}; \theta) = \gamma \boldsymbol{v}(\boldsymbol{x}, t \mid \boldsymbol{c}; \theta) + (1 - \gamma) \boldsymbol{v}(\boldsymbol{x}, t \mid \boldsymbol{\phi}; \theta)$$

Reflow objective:
$$\mathcal{L}_{\text{reflow}}(\theta') = \mathbb{E}_{t,p(x'_0,\widehat{x}_1|c),p_t(x|x'_0,\widehat{x}_1)} \| \boldsymbol{v}_{\text{CFG}}(x,t \mid c;\theta') - (\widehat{x}_1 - x'_0) \|^2$$

Distillation objective: $\mathcal{L}_{\text{distill}}\left(\theta^{\prime\prime}\right) = \mathbb{E}_{t,p\left(x_{0}^{\prime},\hat{x}_{1}\mid c\right),p_{t}\left(x\mid x_{0}^{\prime},\hat{x}_{1}\right)} \|x_{0}^{\prime} + \boldsymbol{v}_{\text{CFG}}(x_{0}^{\prime},t\mid\boldsymbol{c};\theta^{\prime\prime}) - \hat{x}_{1}\|^{2}$

Results

Superior performance across multiple metrics

Model	$FD{\downarrow}$	IS↑	$KL {\downarrow}$	FAD↓	$\mathrm{KID}(10^{-3})\downarrow$	$\mathrm{Acc}(\%)\uparrow$	MOS-Q↑	MOS-A↑
SpecVQGAN (R+F)	31.69	5.23	3.37	5.42	8.53	61.83	3.30 ± 0.06	2.35 ± 0.05
SpecVQGAN (RN50)	32.52	5.21	3.41	5.39	9.00	56.92	3.25 ± 0.07	2.17 ± 0.05
Im2Wav	14.98	7.20	2.57	5.49	3.35	56.70	3.39 ± 0.06	2.29 ± 0.06
Diff-Foley (CG ✓)	23.94	11.11	3.38	4.72	9.58	95.03	3.57 ± 0.08	3.74 ± 0.07
Diff-Foley (CG X)	24.97	11.69	3.23	7.10	10.32	92.53	3.64 ± 0.07	3.59 ± 0.06
LDM	11.79	10.09	2.86	1.77	2.36	95.33	3.72 ± 0.05	3.79 ± 0.07
Frieren	12.26	12.42	2.73	1.32	2.49	97.22	3.78 ± 0.06	$\textbf{3.90} \pm \textbf{0.05}$
FRIEREN (Dopri5)	11.64	12.76	2.75	1.37	2.39	96.87	$\textbf{3.81} \pm \textbf{0.06}$	3.85 ± 0.06

Results

Good few-step and one-step performance with reflow and distillation

Model	Steps	$\mathrm{FD}\!\!\downarrow$	IS↑	$KL\downarrow$	FAD↓	$\mathrm{KID}(10^{-3})\downarrow$	$\mathrm{Acc}(\%)\uparrow$	MOS-Q↑	MOS-A↑
Diff-Foley (CG ✓)		82.61	2.31	4.44	13.64	43.96	31.60	1.28 ± 0.04	1.35 ± 0.03
Diff-Foley (CG X)		86.97	1.86	4.17	14.66	39.73	37.02	1.17 ± 0.03	1.63 ± 0.04
FRIEREN (R X, D X)	1	70.48	2.95	4.21	13.07	26.99	43.18	2.12 ± 0.04	1.71 ± 0.04
FRIEREN (R 🗸, D 🗶)		18.61	6.63	2.60	3.13	3.49	94.96	3.32 ± 0.07	3.74 ± 0.06
Frieren (R \checkmark , D \checkmark)		17.58	8.66	2.56	1.85	2.91	97.85	$\textbf{3.48} \pm \textbf{0.06}$	$\textbf{3.93} \pm \textbf{0.05}$
Diff-Foley (CG ✔)		60.99	3.42	3.62	9.61	3.60	73.30	2.66 ± 0.07	2.98 ± 0.07
Diff-Foley (CG X)	F	51.52	5.14	3.45	10.96	2.66	91.30	3.03 ± 0.08	3.56 ± 0.07
FRIEREN (R X, D X)	5	28.78	6.69	3.02	4.34	8.56	87.69	3.30 ± 0.07	3.37 ± 0.08
Frieren (R 🗸, D 🗶)		14.65	8.28	2.60	2.11	2.28	96.82	$\textbf{3.43} \pm \textbf{0.06}$	$\textbf{3.83} \pm \textbf{0.06}$
Diff-Foley (CG ✔)		23.94	11.11	3.28	4.72	9.58	95.03	3.57 ± 0.08	3.74 ± 0.07
Diff-Foley (CG X)	25	24.97	11.69	3.23	7.10	10.32	92.53	3.64 ± 0.07	3.59 ± 0.06
FRIEREN (R X, D X)	25	12.26	12.42	2.73	1.32	2.49	97.22	$\textbf{3.78} \pm \textbf{0.06}$	$\textbf{3.90} \pm \textbf{0.05}$
FRIEREN (R 🗸, D 🗶)		13.39	9.79	2.64	1.66	2.01	97.36	3.61 ± 0.07	3.88 ± 0.05

Results

High time efficiency

Model	Inference Time (sec)
SpecVQGAN	3.936
Im2Wav	333.246
Diff-Foley (step=25)	2.104
FRIEREN (Dopri5, step=25)	1.510
FRIEREN (Euler, step=25)	0.288
FRIEREN (Euler, step=5)	0.064
FRIEREN (Euler, step=1)	0.031

Thanks for Listening.