Achieving $\tilde{O}(1/\epsilon)$ Sample Complexity for Constrained Markov Decision Process

Jiashuo Jiang (HKUST)

Joint work with Yinyu Ye

22 October, 2024

 \overline{AB}

A MDP problem with constraints to be satisfied

The Se

 4 ロ \rightarrow 4 \overline{r} \rightarrow \rightarrow \overline{z} \rightarrow

G.

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.

Þ

 Ω

 \mathbf{h}

K ロ ▶ K 何 ▶ K

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.
	- ▶ Model parameters are unknown and need to be learned from the data.

4 17 18

 \overline{AB} \overline{B}

 QQ

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.
	- ▶ Model parameters are unknown and need to be learned from the data.
	- \triangleright An approach for multi-objective or safe reinforcement learning.
- Enjoys a very wide applications.
	- \triangleright Prophet inequality with Markovian arrival (Jia et al. (2023)).

A 250 W

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.
	- ▶ Model parameters are unknown and need to be learned from the data.
	- \triangleright An approach for multi-objective or safe reinforcement learning.
- Enjoys a very wide applications.
	- \triangleright Prophet inequality with Markovian arrival (Jia et al. (2023)).
	- ▶ Network revenue management problem with Markovian arrival (Jiang (2023) and Li et al. (2023)).

 Ω

 \overline{AB} \overline{B}

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.
	- ▶ Model parameters are unknown and need to be learned from the data.
	- \triangleright An approach for multi-objective or safe reinforcement learning.
- Enjoys a very wide applications.
	- ▶ Prophet inequality with Markovian arrival (Jia et al. (2023)).
	- ▶ Network revenue management problem with Markovian arrival (Jiang (2023) and Li et al. (2023)).
	- \triangleright Markovian modulated demand process in inventory literature (e.g. Song and Zipkin (1993)).

 Ω

イロメ イタメ イモメイモメ

- A MDP problem with constraints to be satisfied
- In this work, we consider a data-driven setting.
	- ▶ Model parameters are unknown and need to be learned from the data.
	- \triangleright An approach for multi-objective or safe reinforcement learning.
- Enjoys a very wide applications.
	- ▶ Prophet inequality with Markovian arrival (Jia et al. (2023)).
	- ▶ Network revenue management problem with Markovian arrival (Jiang (2023) and Li et al. (2023)).
	- \triangleright Markovian modulated demand process in inventory literature (e.g. Song and Zipkin (1993)).
	- \triangleright Other applications in autonomous driving, robotics, financial management, etc.

(ロ) (何) (ヨ) (ヨ)

 \bullet The tabular setting: a finite set of states S and a finite state of actions A .

K ロ ▶ K 何 ▶ K

- \bullet The tabular setting: a finite set of states S and a finite state of actions A .
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$

K ロ ▶ K 何 ▶ K

- The tabular setting: a finite set of states S and a finite state of actions A .
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$
- A reward function $r : (s, a) \rightarrow [0, 1]$, allowed to be stochastic.

4 0 F

 \overline{AB} \overline{B}

- The tabular setting: a finite set of states S and a finite state of actions A .
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$
- A reward function $r : (s, a) \rightarrow [0, 1]$, allowed to be stochastic.
- K resource consumption functions, $c_k : (s, a) \rightarrow [0, 1]$, allowed to be stochastic for each $k \in [K]$.

 $1.73 \times 1.73 \times 1.$

- The tabular setting: a finite set of states S and a finite state of actions A.
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$
- A reward function $r : (s, a) \rightarrow [0, 1]$, allowed to be stochastic.
- K resource consumption functions, $c_k : (s, a) \rightarrow [0, 1]$, allowed to be stochastic for each $k \in [K]$.
- A discount factor $\gamma \in (0,1)$.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

- The tabular setting: a finite set of states S and a finite state of actions A.
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$
- A reward function $r : (s, a) \rightarrow [0, 1]$, allowed to be stochastic.
- K resource consumption functions, $c_k : (s, a) \rightarrow [0, 1]$, allowed to be stochastic for each $k \in [K]$.
- A discount factor $\gamma \in (0,1)$.
- Goal: find a Markovian policy to maximize

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})]
$$

subject to the resource constraints

$$
\sum_{t=1}^{\infty} \gamma^{t} \cdot \mathbb{E}[c_{k}(a_{t}^{\pi}, s_{t}^{\pi})] \leq \alpha_{k}, \forall k \in [K].
$$

 $\left\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\rangle$

- • The tabular setting: a finite set of states S and a finite state of actions A.
- A transition kernel $P:(a,s)\to s'$ for all $a\in\mathcal{A}$ and $s\in\mathcal{S}.$
- A reward function $r:(s, a) \rightarrow [0, 1]$, allowed to be stochastic.
- K resource consumption functions, $c_k : (s, a) \rightarrow [0, 1]$, allowed to be stochastic for each $k \in [K]$.
- A discount factor $\gamma \in (0,1)$.
- Goal: find a Markovian policy to maximize

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})]
$$

subject to the resource constraints

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[c_k(a_t^{\pi}, s_t^{\pi})] \leq \alpha_k, \forall k \in [K].
$$

 \bullet Unknown parameters: the transition kernel P, reward function r, and the cost function c_k for each $k \in [K]$. $(0.5, 0.40, 0.50)$ 209

• Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.

4 0 F

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

- Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.
- Denote by π^* the optimal policy and OPT the optimal value.

 \overline{AB}

- Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.
- Denote by π^* the optimal policy and OPT the optimal value.
- Sample complexity: for an arbitrary $\epsilon > 0$, how many samples we need in order to construct a policy π such that

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})] \ge \text{OPT} - \epsilon
$$

and

$$
\sum_{t=1}^{\infty} \gamma^{t} \cdot \mathbb{E}[c_{k}(a_{t}^{\pi}, s_{t}^{\pi})] \leq \alpha_{k} + \epsilon, \forall k \in [K].
$$

 Ω

 \overline{AB} \overline{B}

- Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.
- Denote by π^* the optimal policy and OPT the optimal value.
- Sample complexity: for an arbitrary $\epsilon > 0$, how many samples we need in order to construct a policy π such that

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})] \ge \textsf{OPT} - \epsilon
$$

and

$$
\sum_{t=1}^{\infty} \gamma^{t} \cdot \mathbb{E}[c_{k}(a_{t}^{\pi}, s_{t}^{\pi})] \leq \alpha_{k} + \epsilon, \forall k \in [K].
$$

• Sample complexity for constrained MDP.

 \overline{AB} \overline{B}

- • Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.
- Denote by π^* the optimal policy and OPT the optimal value.
- Sample complexity: for an arbitrary $\epsilon > 0$, how many samples we need in order to construct a policy π such that

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})] \ge \text{OPT} - \epsilon
$$

and

$$
\sum_{t=1}^{\infty} \gamma^{t} \cdot \mathbb{E}[c_{k}(a_{t}^{\pi}, s_{t}^{\pi})] \leq \alpha_{k} + \epsilon, \forall k \in [K].
$$

• Sample complexity for constrained MDP.

▶ the worst-case $\tilde{O}(1/\epsilon^2)$ sample complexity known (e.g. Efroni et al. (2020)).

K ロ ト K 何 ト K ヨ ト K

- • Generative model: for each (s, a) , we can obtain a sample of the state transition, reward, and costs, following true distributions.
- Denote by π^* the optimal policy and OPT the optimal value.
- Sample complexity: for an arbitrary $\epsilon > 0$, how many samples we need in order to construct a policy π such that

$$
\sum_{t=1}^{\infty} \gamma^t \cdot \mathbb{E}[r(a_t^{\pi}, s_t^{\pi})] \ge \textsf{OPT} - \epsilon
$$

and

$$
\sum_{t=1}^{\infty} \gamma^{t} \cdot \mathbb{E}[c_{k}(a_{t}^{\pi}, s_{t}^{\pi})] \leq \alpha_{k} + \epsilon, \forall k \in [K].
$$

• Sample complexity for constrained MDP.

- ▶ the worst-case $\tilde{O}(1/\epsilon^2)$ sample complexity known (e.g. Efroni et al. (2020)).
- ▶ Whether we can achieve in[s](#page-14-0)t[a](#page-15-0)nce-de[p](#page-21-0)endent $\tilde{O}(1/\epsilon)$ $\tilde{O}(1/\epsilon)$ $\tilde{O}(1/\epsilon)$ $\tilde{O}(1/\epsilon)$ sa[m](#page-20-0)p[le](#page-0-0) [com](#page-0-1)[pl](#page-0-0)[exi](#page-0-1)[ty?](#page-0-0)

• We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.

Þ

 \sim

K ロ ▶ K 何 ▶ K 日

 299

- We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ.

 Ω

K ロ ▶ K 何 ▶ K

- \bullet We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ.
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.

K ロ ▶ | K 伺 ▶ | K ヨ ▶

- \bullet We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ.
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.
- Contribution 1: characterize of Δ via the *corner points* of a feasible region.

 $\left(7.73 \times 10^{-4} \right)$

- \bullet We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ.
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.
- Contribution 1: characterize of Δ via the *corner points* of a feasible region.
	- \triangleright the first characterization of instance hardness for CMDP problems.

- We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ .
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.
- Contribution 1: characterize of Δ via the *corner points* of a feasible region.
	- \triangleright the first characterization of instance hardness for CMDP problems.
- Contribution 2: a resolving method for solving CMDP problems with instance optimality.

 Ω

- We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ .
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.
- Contribution 1: characterize of Δ via the *corner points* of a feasible region.
	- \triangleright the first characterization of instance hardness for CMDP problems.
- Contribution 2: a resolving method for solving CMDP problems with instance optimality.
	- \triangleright Introduce the online LP framework and borrow the resolving algorithmic idea.

- We are the first to achieve the instance-dependent $\tilde{O}(1/\epsilon)$ sample complexity with a new algorithm.
	- \triangleright The $\tilde{O}(\cdot)$ term hides a instance-dependent gap Δ .
	- \blacktriangleright All our approach can be extended to finite horizon episodic setting, online learning setting, and offline learning setting.
- Contribution 1: characterize of Δ via the *corner points* of a feasible region.
	- \triangleright the first characterization of instance hardness for CMDP problems.
- Contribution 2: a resolving method for solving CMDP problems with instance optimality.
	- \blacktriangleright Introduce the online LP framework and borrow the resolving algorithmic idea.
	- ▶ Our resolving method relaxes the non-degeneracy assumption.

(ロ) (何) (ヨ) (ヨ)

LP Reformulation

• The occupancy measure: the total expected discounted time spent on a state-action pair, under a policy (Altman 1999).

K ロ ▶ | K 何 ▶ | K ヨ ▶

LP Reformulation

- The occupancy measure: the total expected discounted time spent on a state-action pair, under a policy (Altman 1999).
- A LP formulation of the optimal policy.

$$
V^* = \max \sum_{(s,a)} r(s,a) \cdot q(s,a)
$$

s.t.
$$
\sum_{(s,a)} c_k(s,a) \cdot q(s,a) \leq \alpha_k, \forall k \in [K]
$$

$$
\sum_{(s,a)} q(s,a) \cdot (1_{s=s'} - \gamma \cdot P(s'|s,a)) = (1 - \gamma) \cdot \mu(s'), \forall s' \in S
$$

$$
q(s,a) \geq 0, \forall s \in S, a \in A
$$

 $q(s, a)$: the total expected discounted time spent on (s, a) .

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 & 1 \end{array} \right\}$

LP Reformulation

- The *occupancy measure*: the total expected discounted time spent on a state-action pair, under a policy (Altman 1999).
- A LP formulation of the optimal policy.

$$
V^* = \max \sum_{(s,a)} r(s,a) \cdot q(s,a)
$$

s.t.
$$
\sum_{(s,a)} c_k(s,a) \cdot q(s,a) \leq \alpha_k, \forall k \in [K]
$$

$$
\sum_{(s,a)} q(s,a) \cdot (1_{s=s'} - \gamma \cdot P(s'|s,a)) = (1 - \gamma) \cdot \mu(s'), \forall s' \in S
$$

$$
q(s,a) \geq 0, \forall s \in S, a \in A
$$

 $q(s, a)$: the total expected discounted time spent on (s, a) .

However, the LP parameters unknown hence cannot be directly solved.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• The feasible region for the policy is a *polytope*.

K ロ ▶ K 何 ▶ K

- The feasible region for the policy is a *polytope*.
- Feasible solution is "continuous" over the feasible region.
	- \blacktriangleright Hence no positive gap between the optimal solution and the sub-optimal one.

4 17 18

 \overline{AB}

- The feasible region for the policy is a *polytope*.
- Feasible solution is "continuous" over the feasible region.
	- \blacktriangleright Hence no positive gap between the optimal solution and the sub-optimal one.
- There always exists one *corner point* to be optimal (basic solution).

 Ω

 \overline{AB}

- The feasible region for the policy is a *polytope*.
- Feasible solution is "continuous" over the feasible region.
	- \blacktriangleright Hence no positive gap between the optimal solution and the sub-optimal one.
- There always exists one *corner point* to be optimal (basic solution).
	- \triangleright If restrict to corner point solutions, then there exists a positive gap between the optimal one and the sub-optimal one.

 \overline{AB} \overline{B}

- The feasible region for the policy is a *polytope*.
- Feasible solution is "continuous" over the feasible region.
	- \blacktriangleright Hence no positive gap between the optimal solution and the sub-optimal one.
- **•** There always exists one *corner point* to be optimal (basic solution).
	- \triangleright If restrict to corner point solutions, then there exists a positive gap between the optimal one and the sub-optimal one.

(□) (@) (□)

Restricting to corner points requires us to characterize the LP basis.

The Se

E.N

K ロ ▶ K 何 ▶ K

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).

4.000.00

 \overline{AB} \overline{B}

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \blacktriangleright $J \subset [K]$: the set of constraints being binding.

4.000.00

 \overline{AB} \overline{B}

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \blacktriangleright $J \subset [K]$: the set of constraints being binding.
- General idea: *lexicographically* restrict the variables to zero to check whether the optimal LP value changes.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \blacktriangleright $J \subset [K]$: the set of constraints being binding.
- General idea: *lexicographically* restrict the variables to zero to check whether the optimal LP value changes.
	- \triangleright For the primal LP: obtain the set of basic variables.

 $\left\langle \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\rangle$

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \blacktriangleright $J \subset [K]$: the set of constraints being binding.
- General idea: *lexicographically* restrict the variables to zero to check whether the optimal LP value changes.
	- \triangleright For the primal LP: obtain the set of basic variables.
	- \triangleright For the dual LP: obtain the set of binding constraints.

 \overline{AB} \overline{B}

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \blacktriangleright $J \subset [K]$: the set of constraints being binding.
- General idea: *lexicographically* restrict the variables to zero to check whether the optimal LP value changes.
	- \triangleright For the primal LP: obtain the set of basic variables.
	- \triangleright For the dual LP: obtain the set of binding constraints.

 \overline{AB} \overline{B}

- Restricting to corner points requires us to characterize the LP basis.
	- ▶ $I \subset S \times A$: the index set of basic variables (the optimal actions to take for each state).
	- \triangleright $J \subset [K]$: the set of constraints being binding.
- General idea: *lexicographically* restrict the variables to zero to check whether the optimal LP value changes.
	- \triangleright For the primal LP: obtain the set of basic variables.
	- \triangleright For the dual LP: obtain the set of binding constraints.

Theorem

When the sample size $n \geq \Omega(\frac{1}{\Delta} \cdot \log(1/\epsilon))$, we can identify one optimal I* and J* with probability at least $1 - \epsilon$.

 Ω

(ロ) (何) (ヨ) (ヨ)

E **Si**

Ξ

K ロ ト K 何 ト K

重

We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).

ALC: N

K ロ ト K 倒 ト K 走 ト

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .

 Ω

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.

(ロ) (何) (ヨ) (ヨ)

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!

イロト イ押ト イヨト イヨト

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!
	- ▶ Non-degeneracy assumption: the underlying LP has a unique optimal basis.

イロト イ押ト イヨト イヨト

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!
	- \triangleright Non-degeneracy assumption: the underlying LP has a unique optimal basis.
- Our innovation: we resolve the LP while sticking to the optimal basis I^* and J ∗ that we have identified.

 Ω

イロメ イ押 トイヨ トイヨメ

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!
	- \triangleright Non-degeneracy assumption: the underlying LP has a unique optimal basis.
- Our innovation: we resolve the LP while sticking to the optimal basis I^* and J ∗ that we have identified.
	- \triangleright We resolve a set of linear equations with only basic variables and binding constraints involved.

K ロ ト K 何 ト K ヨ ト K ヨ ト ー

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!
	- \triangleright Non-degeneracy assumption: the underlying LP has a unique optimal basis.
- Our innovation: we resolve the LP while sticking to the optimal basis I^* and J ∗ that we have identified.
	- \triangleright We resolve a set of linear equations with only basic variables and binding constraints involved.

K ロ ト K 何 ト K ヨ ト K ヨ ト ー

- We adopt the resolving algorithm from the online LP literature (e.g. Agrawal et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).
- At each iteration $t = 1, \ldots, T$,
	- ► construct an empirical LP V^* using available samples to obtain q^t .
	- is use the new sample and q^t to compute resource consumption.
	- \blacktriangleright update the remaining resources.
- A logarithmic regret $(O(\log T))$ can be obtained.
	- \triangleright A crucial step in previous analysis is to stabilize the optimal basis!
	- \triangleright Non-degeneracy assumption: the underlying LP has a unique optimal basis.
- Our innovation: we resolve the LP while sticking to the optimal basis I^* and J ∗ that we have identified.
	- \triangleright We resolve a set of linear equations with only basic variables and binding constraints involved.

Theorem

Our algorithm enjoys a sample complexity of $\tilde{O}(\frac{1}{\Delta} \cdot \frac{1}{\epsilon})$ $\tilde{O}(\frac{1}{\Delta} \cdot \frac{1}{\epsilon})$.

Numerical Experiments

- We set $|S| = |A| = 10$ and $\gamma = 0.7$.
- \bullet We randomly generate the transition kernel P , and reward and cost functions, r and c_k .

K ロ ▶ K 何 ▶ K

 QQ

Numerical Experiments

- We set $|S| = |A| = 10$ and $\gamma = 0.7$.
- \bullet We randomly generate the transition kernel P , and reward and cost functions, r and c_k .
- We consider the error term

$$
\mathsf{Err}(N) = \|\boldsymbol{q}^N - \boldsymbol{q}^*\|_1/\|\boldsymbol{q}^*\|_1
$$

where \bm{q}^N denotes the occupancy measure computed by our algorithm with N samples.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

Numerical Experiments

- We set $|S| = |A| = 10$ and $\gamma = 0.7$.
- \bullet We randomly generate the transition kernel P , and reward and cost functions, r and c_k .
- We consider the error term

$$
\mathsf{Err}(N) = \|\boldsymbol{q}^N - \boldsymbol{q}^*\|_1/\|\boldsymbol{q}^*\|_1
$$

where \bm{q}^N denotes the occupancy measure computed by our algorithm with N samples.

