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Constrained MDP

A MDP problem with constraints to be satisfied

In this work, we consider a data-driven setting.

▶ Model parameters are unknown and need to be learned from the data.

▶ An approach for multi-objective or safe reinforcement learning.

Enjoys a very wide applications.

▶ Prophet inequality with Markovian arrival (Jia et al. (2023)).

▶ Network revenue management problem with Markovian arrival (Jiang (2023)
and Li et al. (2023)).

▶ Markovian modulated demand process in inventory literature (e.g. Song and
Zipkin (1993)).

▶ Other applications in autonomous driving, robotics, financial management, etc.
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Problem Formulation
The tabular setting: a finite set of states S and a finite state of actions A.

A transition kernel P : (a, s) → s ′ for all a ∈ A and s ∈ S.

A reward function r : (s, a) → [0, 1], allowed to be stochastic.

K resource consumption functions, ck : (s, a) → [0, 1], allowed to be
stochastic for each k ∈ [K ].

A discount factor γ ∈ (0, 1).

Goal: find a Markovian policy to maximize
∞∑
t=1

γt · E[r(aπt , sπt )]

subject to the resource constraints
∞∑
t=1

γt · E[ck(aπt , sπt )] ≤ αk ,∀k ∈ [K ].

Unknown parameters: the transition kernel P, reward function r , and the cost
function ck for each k ∈ [K ].
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Performance Measure
Generative model: for each (s, a), we can obtain a sample of the state
transition, reward, and costs, following true distributions.

Denote by π∗ the optimal policy and OPT the optimal value.

Sample complexity: for an arbitrary ϵ > 0, how many samples we need in
order to construct a policy π such that

∞∑
t=1

γt · E[r(aπt , sπt )] ≥ OPT − ϵ

and
∞∑
t=1

γt · E[ck(aπt , sπt )] ≤ αk + ϵ,∀k ∈ [K ].

Sample complexity for constrained MDP.

▶ the worst-case Õ(1/ϵ2) sample complexity known (e.g. Efroni et al. (2020)).

▶ Whether we can achieve instance-dependent Õ(1/ϵ) sample complexity?
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Our Main Results

We are the first to achieve the instance-dependent Õ(1/ϵ) sample complexity
with a new algorithm.

▶ The Õ(·) term hides a instance-dependent gap ∆.

▶ All our approach can be extended to finite horizon episodic setting, online
learning setting, and offline learning setting.

Contribution 1: characterize of ∆ via the corner points of a feasible region.

▶ the first characterization of instance hardness for CMDP problems.

Contribution 2: a resolving method for solving CMDP problems with instance
optimality.

▶ Introduce the online LP framework and borrow the resolving algorithmic idea.

▶ Our resolving method relaxes the non-degeneracy assumption.
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LP Reformulation

The occupancy measure: the total expected discounted time spent on a
state-action pair, under a policy (Altman 1999).

A LP formulation of the optimal policy.

V ∗ = max
∑
(s,a)

r(s, a) · q(s, a)

s.t.
∑
(s,a)

ck(s, a) · q(s, a) ≤ αk ,∀k ∈ [K ]

∑
(s,a)

q(s, a) · (1s=s′ − γ · P(s ′|s, a)) = (1 − γ) · µ(s ′),∀s ′ ∈ S

q(s, a) ≥ 0,∀s ∈ S, a ∈ A

q(s, a): the total expected discounted time spent on (s, a).

However, the LP parameters unknown hence cannot be directly solved.
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Characterization via Optimal Basis

The feasible region for the policy is a polytope.

Feasible solution is “continuous” over the feasible region.

▶ Hence no positive gap between the optimal solution and the sub-optimal one.

There always exists one corner point to be optimal (basic solution).

▶ If restrict to corner point solutions, then there exists a positive gap between
the optimal one and the sub-optimal one.
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Finding the Optimal Basis

Restricting to corner points requires us to characterize the LP basis.

▶ I ⊂ S ×A: the index set of basic variables (the optimal actions to take for
each state).

▶ J ⊂ [K ]: the set of constraints being binding.

General idea: lexicographically restrict the variables to zero to check whether
the optimal LP value changes.

▶ For the primal LP: obtain the set of basic variables.

▶ For the dual LP: obtain the set of binding constraints.

Theorem
When the sample size n ≥ Ω( 1

∆ · log(1/ϵ)), we can identify one optimal I ∗ and J∗

with probability at least 1 − ϵ.
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Finding the Optimal Distributions

We adopt the resolving algorithm from the online LP literature (e.g. Agrawal
et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).

At each iteration t = 1, . . . ,T ,

▶ construct an empirical LP V ∗ using available samples to obtain qt .

▶ use the new sample and qt to compute resource consumption.

▶ update the remaining resources.

A logarithmic regret (O(logT )) can be obtained.

▶ A crucial step in previous analysis is to stabilize the optimal basis!

▶ Non-degeneracy assumption: the underlying LP has a unique optimal basis.

Our innovation: we resolve the LP while sticking to the optimal basis I ∗ and
J∗ that we have identified.

▶ We resolve a set of linear equations with only basic variables and binding
constraints involved.

Theorem
Our algorithm enjoys a sample complexity of Õ( 1

∆ · 1
ϵ ).
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∆ · 1
ϵ ).

Jiang, Ye Sample Complexity for Constrained MDP 22 October, 2024 9 / 11



Finding the Optimal Distributions
We adopt the resolving algorithm from the online LP literature (e.g. Agrawal
et al. (2014), Kesselheim et al. (2014) and Li and Ye (2022)).

At each iteration t = 1, . . . ,T ,

▶ construct an empirical LP V ∗ using available samples to obtain qt .

▶ use the new sample and qt to compute resource consumption.

▶ update the remaining resources.

A logarithmic regret (O(logT )) can be obtained.

▶ A crucial step in previous analysis is to stabilize the optimal basis!

▶ Non-degeneracy assumption: the underlying LP has a unique optimal basis.

Our innovation: we resolve the LP while sticking to the optimal basis I ∗ and
J∗ that we have identified.

▶ We resolve a set of linear equations with only basic variables and binding
constraints involved.

Theorem
Our algorithm enjoys a sample complexity of Õ( 1
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Numerical Experiments
We set |S| = |A| = 10 and γ = 0.7.

We randomly generate the transition kernel P, and reward and cost
functions, r and ck .

We consider the error term

Err(N) = ∥qN − q∗∥1/∥q∗∥1

where qN denotes the occupancy measure computed by our algorithm with N
samples.
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