

N-agent Ad Hoc Teamwork

Caroline Wang, Arrasy Rahman, Ishan Durugkar, Elad Liebman, Peter Stone

Neurips 2024

Current multi-agent learning paradigms are not flexible enough.

- Cooperative Multi-Agent
 Reinforcement Learning^[1] (C-MARL) assumes all agents are
 under control of learning
 algorithm
- Ad Hoc Teamwork^[2] (AHT) & Zero Shot Coordination^[3] (ZSC): assumes a **single** agent under control of learning algorithm

How can *sets* of agents coordinate with each other?

^[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018

^[2] Mirsky et al. A Survey of Ad Hoc Teamwork Research. EUMAS 2022.

^[3] Hu et al. "Other-Play" for Zero-Shot Coordination. ICML 2020

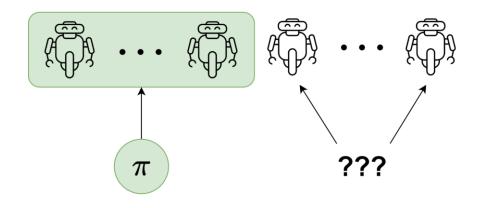
Current multi-agent learning paradigms are not flexible enough.

- Cooperative Multi-Agent
 Reinforcement Learning^[1] (C-MARL) assumes all agents are
 under control of learning
 algorithm
- Ad Hoc Teamwork^[2] (AHT) & Zero Shot Coordination^[3] (ZSC): assumes a **single** agent under control of learning algorithm

π ???

How can *sets* of agents coordinate with each other?

^[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018


^[2] Mirsky et al. A Survey of Ad Hoc Teamwork Research. EUMAS 2022.

^[3] Hu et al. "Other-Play" for Zero-Shot Coordination. ICML 2020

Current multi-agent learning paradigms are not flexible enough.

- Cooperative Multi-Agent
 Reinforcement Learning^[1] (C-MARL) assumes all agents are
 under control of learning
 algorithm
- Ad Hoc Teamwork^[2] (AHT) & Zero Shot Coordination^[3] (ZSC): assumes a **single** agent under control of learning algorithm

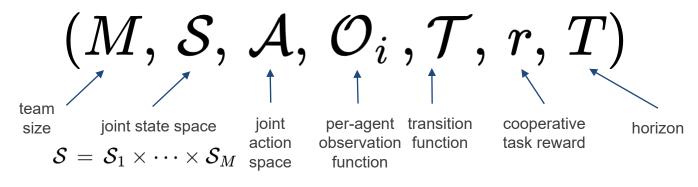
How can *sets* of agents coordinate with each other?

^[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018

^[2] Mirsky et al. A Survey of Ad Hoc Teamwork Research. EUMAS 2022.

^[3] Hu et al. "Other-Play" for Zero-Shot Coordination. ICML 2020

Problem Statement

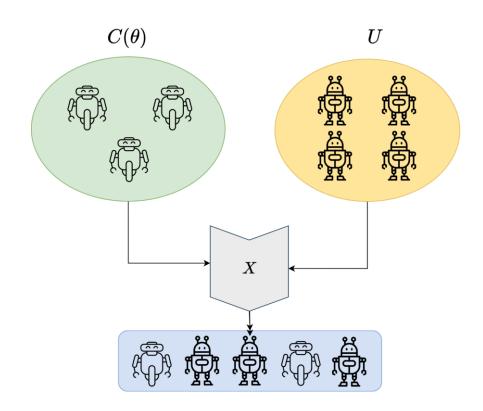

N-agent ad hoc teamwork (NAHT):

To create a **set** of autonomous agents that are able to efficiently and robustly collaborate with previously unknown teammates on tasks to which they are all individually capable of contributing as team members.

N-agent Ad Hoc Teamwork (NAHT)

Dec-POMDP

N-agent Ad Hoc Teamwork

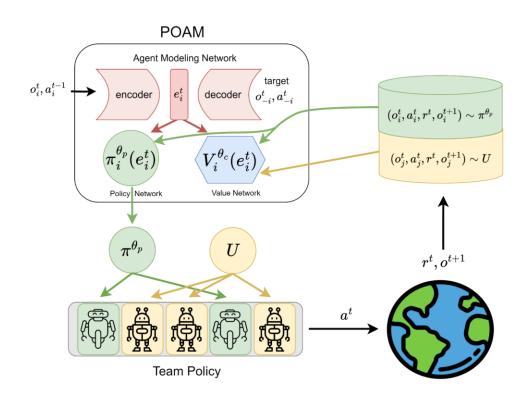

 $C(\theta)$ - set of controlled agents, parameterized by θ

U - set of non-controlled agents

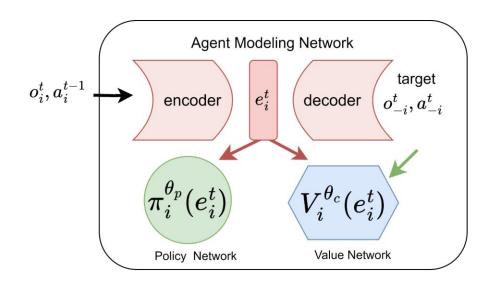
X - team sampling procedure

Obiective:

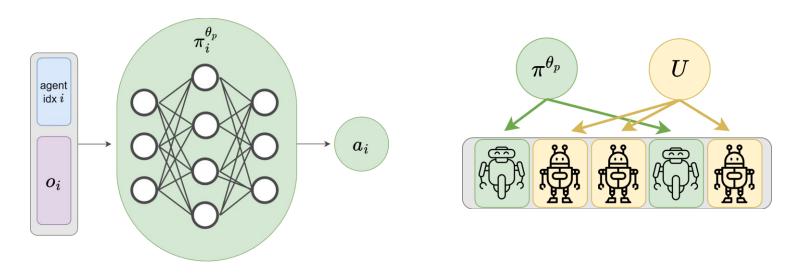
$$\max_{\theta} \left(\mathbb{E}_{\boldsymbol{\pi}^{(M)} \sim X(U, C(\theta))} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right] \right)$$


Challenges:

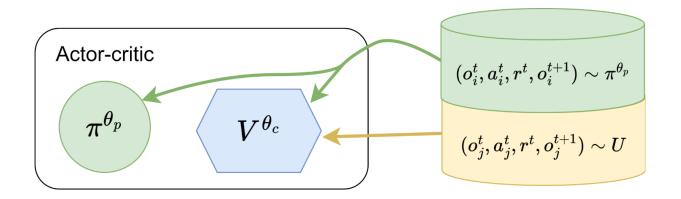
- 1) Generalization: Coordinating with non-controlled and potentially unknown teammates
- 2) Openness: coping with an unknown number of controlled teammates


Key Ideas

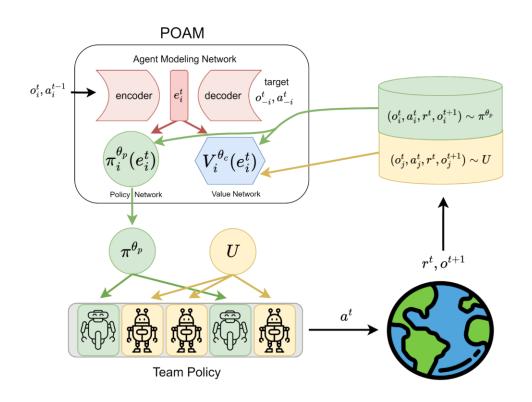
- Independent PPO with parameter sharing
- Training critic with data from controlled and noncontrolled agents
- Teammate modelling



Teammate modelling via recurrent encoder-decoder architecture

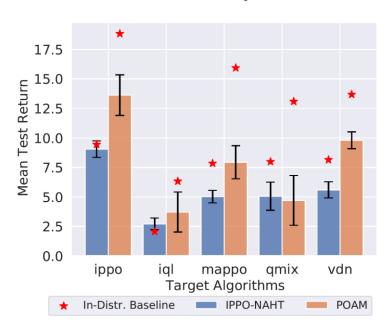


Independent PPO with parameter sharing enables dealing with a changing number of teammates during training


Training critic with data from controlled and uncontrolled agents

Key Ideas

- Independent PPO with parameter sharing
- Training critic with data from controlled and noncontrolled agents
- Teammate modelling


Experiments

- Domains:
 - StarCraft II Multi-Agent Challenge^[1]: 5v6, 8v9, 3s5z, 10v11
 - Multi-agent particle environment^[2]: Predator-prey task (MPE-PP)
- Uncontrolled teammates: IPPO, QMIX, VDN, IQL, MAPPO
- Baseline: IPPO-NAHT

Generalization to Unseen Agents

Predator Prey

Thanks for listening!

Caroline Wang caroline.l.wang@utexas.edu

Scan to view paper

Collaborators:

Arrasy Rahman

Ishan Durugkar

Elad Liebman

Peter Stone

