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Segment Anything Model (SAM) is a large-scale foundation 

model that has revolutionized segmentation methodology

SAM features robust zero-shot capabilities and flexible prompting options (e.g. point, box, mask)

Example from https://segment-anything.com/

Interactive segmentation Automatic segmentation Zero-shot capacity
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However, the prediction of SAM is unsatisfactory in many 

cases, especially for intricate structures

“SAM is not optimized for the very high IoU regime” – SAM paper 
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Existing methods suggest fine-tuning SAM with high quality 

annotations for enhanced performance

Tuning 0.5% 

parameters

SAM-Adapter:

HQ-SAM:
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It claims to preserve the zero-

shot capabilities and flexibility 
of SAM by such lightweight 
fine-tuning.



Is the zero-shot performance really preserved? Let’s find out

● Previously, HQ-SAM was assessed on closely related datasets, all focused 

on object segmentation tasks. 

● We have constructed a more comprehensive evaluation set containing a 

broader array of tasks for thorough analysis.
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Comprehensive evaluation across segmentation tasks 

1. Salient Object:

• COIFT/ DIS-VD/ ThinObject5K/ HR-SOD/ 
VOCEVAL/BIG

2. Entity:

• EntitySeg validation sets with 454, 459 and 401 images, 
detailing both foreground and background.

3. Part:

• Fashionpedia (1,148 images)
• Fashionpedia subpart (868 images)
• Multi-Human Parsing (1,000 images)
• Easyportrait (1,000 images)
• Paco (1,000 images)
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Our experiments show that HQ-SAM forgets how to 

“segment anything”

Mean Boundary IoU
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Our proposal:

Leverage human labeled data to improve 

segmentation quality :

● Pro: high-quality annotation

● Con: limited quantity and variety

Leverage unlabeled data to prevent overfitting

● Pro: diverse and large quantity

● Con: SAM pseudo labels can be noisy
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Challenges

Human annotated data and pseudo labels diverge significantly.

Simply merging them without distinction can lead to issues:

● Pseudo-labels are inaccurate

● Human annotations focus on different tasks, resulting in systematic differences between 

labels
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Challenge 1: the pseudo-labels are inaccurate

(1) Inaccurate segmentation is reinforced;

(2) Point prompts sampled from the pseudo labels can be completely incorrect.
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Solution: quantify and leverage uncertainty in the SAM 

pseudo labels

This inaccuracy is systematic and predictable. 
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Challenge 2: human annotations focus on different tasks, 

resulting in systematic differences between labels

● Human-annotated masks may include 

multiple entities in a complex 

arrangement.

● SAM pseudo labels, mostly correspond to 

entity segmentation or part 

segmentation

A high degree of ambiguity regarding the segmentation mask that should be predicted by the model 

after the initial prompt.

Solution: Incorporate a task prompt, indicating the segmentation task relevant to each example. 
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Segment with Uncertainty Model (SUM) framework

Salient Object Entity

13



Segment with Uncertainty Model (SUM) framework

• Uncertainty-aware prompt sampling: reduces misleading prompt

• Uncertainty-aware loss: reduces the influence of regions that are expected to be inaccurate 
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Segment with Uncertainty Model (SUM) framework

The task prompt can also 

be leveraged to specify the 
desired segmentation task 
during inference. 
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SUM improves SAM without forgetting to “segment anything”
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Experiments with different numbers of human annotations

Datasets

● SA-250K: Unlabeled 250,000 images.

● HQSeg-44K: human-annotated 44,320 images with 

high-quality salient-object masks.

● EntitySeg training set: human-annotated 31,913 

images, each with an average of 20 entity masks,

● Internal dataset: A human-annotated set containing 

252,798 images with salient-object masks, 60,798 with 

entity masks, and 153,046 focused on part 

segmentation for human parsing.

Fine-Tuning Sets

● FT-Small: SA-250K and HQSeg-44K

● FT-Medium: SA-250K, HQSeg-44K, and EntitySeg

● FT-Large: SA-250K and the internal dataset
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SUM outperforms SAM across different budgets

● 5-point prompted interactive segmentation results
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Comparison with previous methods
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Comparison with Semi-supervised 

Methods
Comparison with Light-weight Fine-

tuning Methods



Ablation
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Visualization examples 
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Visualization examples 
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Visualization examples 
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Visualization examples 
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Visualization examples 
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Thanks
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