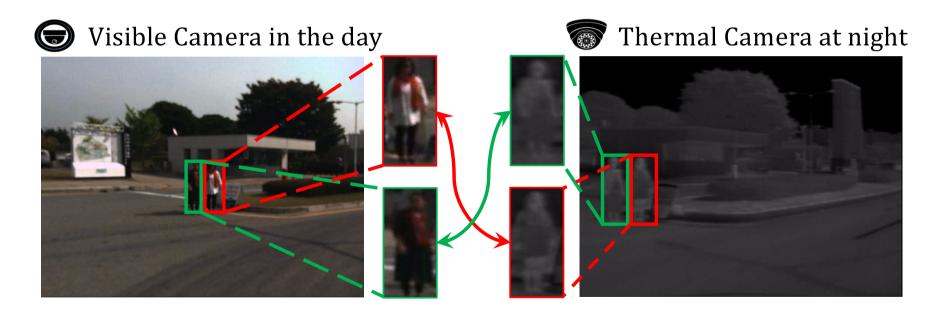


Multimedia Analysis & Reasoning Lab

Empowering Visible-Infrared Person Re-Identification with Large Foundation Models

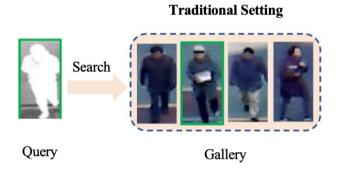
Zhangyi Hu^{1#}, Bin Yang^{1#}, Mang Ye^{1*} ¹School of Computer Science, Wuhan University, Wuhan, China


Paper: https://neurips.cc/virtual/2024/poster/93497 Project Page: https://github.com/WHU-HZY/TVI-LFM

1

Background

Visible-Infrared Person Re-Identification



Learn a cross-modality ReID model on a set of visible-infrared images with identity labels

Problem

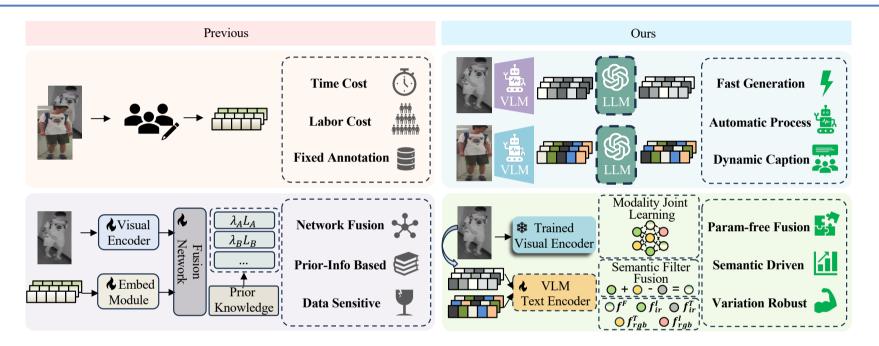
Modality gap primarily caused by critical information absence

 A man wearing
 Our Setting

 a blue coat...
 Gallery

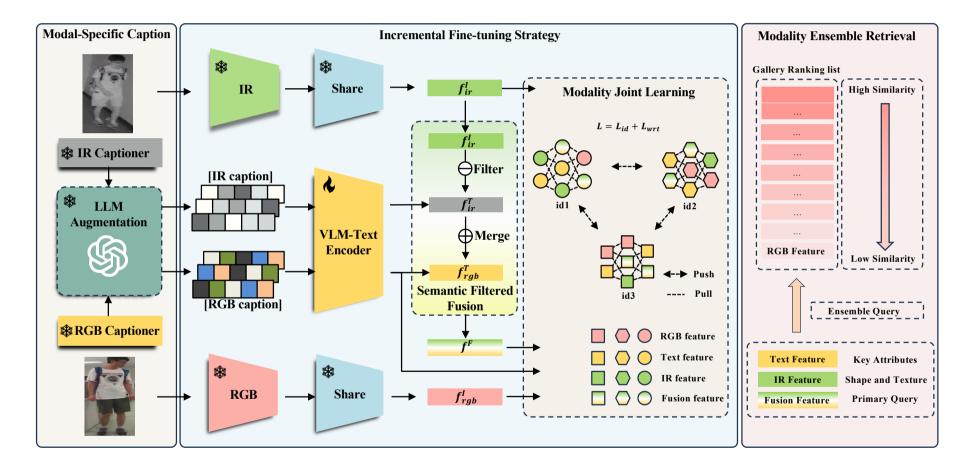
 Describe
 Aman wearing

 Aman wearing Gallery


 Query
 Gallery

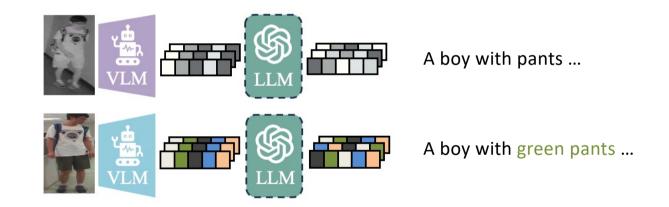
- □ Traditional VI-ReID
- Critical information absence in the infrared modality, e.g. color
- X Significant modality gap

- **VI-ReID** w/ heterogeneous text
- Enhance the infrared modality by auxiliary information
- Bridge the modality gap with texts


Motivation

- Existing methods rely on **human description, complex prior-info dependent modules** to compensate for the infrared modality.
- \checkmark
- Developments of **VLMs** and **LLMs** motivate us to propose a VI-ReID framework driven by Large Foundation Model (**TVI-LFM**). The basic idea is to **enrich infrared representations** with **automatically** generated **heterogeneous text**.

Framework



Methodology

Modal-Specific Caption (MSC):

MSC introduces fine-tuned VLMs as captioners to **automatically** generate **heterogeneous** text from visible and infrared images, and utilizes LLM rephrasing for text augmentation.

Methodology

Incremental Fine-tuning Strat

IFS incorporates a pre-trained VLM

generated filter a man with hair. wearing a half sleeves t - shirt that he paired with full length jeans. he has matched his clothes with a pair of shoes. Blip-RGB

target description a man with black hair. wearing a green half sleeves t - shirt that he paired with dark black _ colour full length ieans, he has matched his clothes with dark black colour shoes.

generated filter a boy with short hair

paired with shoes,

target description

a boy with short black wearing a round neck. hair wearing a round neck, short sleeves red short sleeves t - shirt with jogger pants, t - shirt with grev + jogger pants, paired and a bag on his back with green shoes, and a black bag on his back. Blip-IR

text encoder to minimize the domain gap between the generated texts and the original visual modalities.

Semantic Filtered Fusion (SFF) •

target description a man with black hair, wearing a green half sleeves t - shirt that he paired with dark black -+ colour full length jeans. he has matched his clothes with dark black colour shoes.

generated filter target description

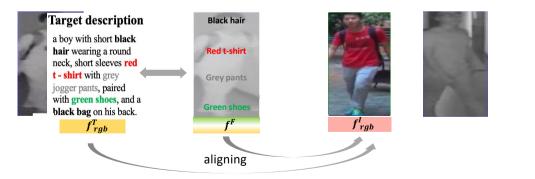
a boy with short hair

wearing a round neck,

short sleeves t - shirt

and a bag on his back.

Blip-IR


with jogger pants,

paired with shoes,

a boy with short black hair wearing a round neck, short sleeves red t - shirt with grey + jogger pants, paired with green shoes, and a black bag on his back.

Modality Joint Learning (MJL) .

Methodology

Modality Ensemble Retrieval (MER):

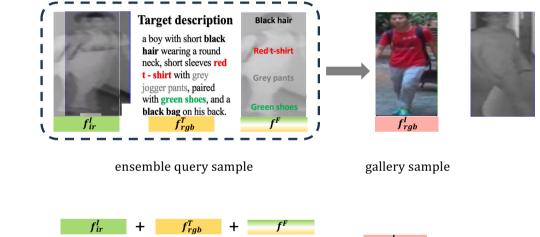
Forming **ensemble query** representations for improvementations

Utilize complementary strengths from different modalities to improve the query representations:

- **Fusion**: primary query ٠
- Infrared image: shape and texture
- Text: key attributes like color ٠

Calculating the similarity score based on the ensemble features and gallery features is equivalent to calculating the similarity among higher dimension features with larger inter-class distances.

fir


wearing a half sleeves t - shirt that he paired with full length jeans. he has matched his clothes with a pair of shoes Blip-RGB

target description a man with black hair, wearing a green half sleeves t - shirt that he paired with dark black colour full length ieans, he has matched his clothes with dark black colour shoes.

and a bag on his back Blip-IR

 f_{rgb}^{I} 3 f_{rab}^T f_{rab}^{I} f_{rgb}^{I} f_{rgb}^{I}

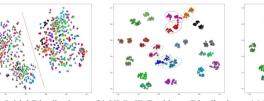
Experiments

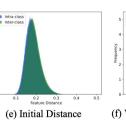
Comparison with Stat-Of-The-Art Methods

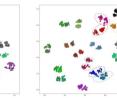
Table 2: Comparison with the state-of-the-art methods on the proposed Tri-SYSU-MM01.

Methods	Venue	Tuna	All Search			Indoor Search		
Methods	venue	Туре	R-1	mAP	mINP	R-1	mAP	mINP
Zero-Padding [46]	ICCV-17		14.80	15.95	-	20.58	26.92	-
HCML [56]	AAAI-18		14.32	16.16	-	24.52	30.08	-
cmGAN [6]	IJCAI-18		26.97	27.80	-	31.63	42.19	-
AlignGAN [43]	ICCV-19		42.40	40.70	-	45.90	54.30	-
AGW [59]	TPAMI-21		47.50	47.65	35.30	54.17	62.97	59.23
DDAG [58]	ECCV-20		54.75	53.02	39.62	61.02	67.98	62.61
CM-NAS [12]	ICCV-21	$I \rightarrow R$	61.99	60.02	-	67.01	72.95	-
DART [53]	CVPR-22		68.7	66.3	-	82.0	73.8	-
CAJ [57]	ICCV-21		69.88	66.89	53.61	76.26	80.37	76.79
DEEN [65]	CVPR-23		74.70	71.80	-	80.30	83.30	-
SAAI [10]	ICCV-23		75.90	77.03	-	83.20	88.01	-
MSCLNet [64]	ECCV-22		76.99	71.64	-	78.49	81.17	-
SGIEL [11]	CVPR-23		77.12	72.33	-	82.07	82.95	-
PartMix [20]	CVPR-23		77.78	74.62	-	81.52	84.38	-
YYDS [9]	Arxiv-24	$I + T \rightarrow R$	74.60	70.35	56.01	81.35	83.64	79.56
VI-ReID Backbone	-	$I \rightarrow R$	69.89	66.74	53.34	76.91	80.64	76.70
TVI-LFM	-	$I + T \rightarrow R$	84.90	81.47	70.85	89.06	90.78	88.39

Table 3:	Comparison	with the	state-of-the-art	methods o	n the pro	oposed [Γri-RegDB	and Tri-LLCM.

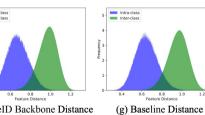

Methods	Venue	Type	Tri-RegDB			Tri-LLCM		
wiethous	venue	Турс	R-1	mAP	mINP	R-1	mAP	mINP
DDAG [58]	ECCV-20		68.06	61.80	48.62	40.3	48.4	-
AGW [59]	TPAMI-21		70.49	65.90	51.24	43.6	51.8	-
CAJ [57]	ICCV-21	$I \rightarrow R$	84.8	77.8	61.56	48.8	56.6	-
DART [53]	CVPR-22		82.0	73.8	-	52.2	59.8	-
MMN [66]	MM-21		87.5	80.5	-	52.5	58.9	-
DEEN [65]	CVPR-23		89.5	83.4	-	54.9	62.9	-
YYDS [9]	Arxiv-24	$I + T \rightarrow R$	90.95	84.22	70.12	58.13	64.91	61.77
VI-ReID Backbone	-	$I \rightarrow R$	89.51	83.51	69.65	53.53	59.77	56.40
TVI-LFM	-	$ I + T \rightarrow R $	91.38	85.92	72.73	58.19	65.08	61.83

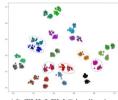

Ablation Study


	$I + T \rightarrow R$				Tri-SYSU-MM01			Tri-LLCM		
В	SFF	MJL	LLM	MER	R1	mAP	mINP	R1	mAP	mINP
\checkmark					72.52	69.15	55.93	52.63	58.82	55.43
\checkmark	\checkmark				77.00	73.73	61.50	54.73	60.95	57.64
\checkmark	\checkmark	\checkmark			83.97	80.40	69.46	56.76	63.58	60.35
\checkmark	\checkmark	\checkmark	\checkmark		84.17	80.72	70.02	57.13	64.06	60.72
\checkmark	\checkmark	\checkmark		\checkmark	84.88	81.32	70.57	57.09	63.87	60.62
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	84.90	81.47	70.85	58.19	65.08	61.83

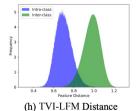
Visualization

 \circ Gall samples \triangle Query samples





(a) Initial Distribution (b) VI-ReID Backbone Distribution (c) Baseline Distribution


0.6 0.8

(f) VI-ReID Backbone Distance

(d) TVI-LFM Distribution

Thanks for watching!

Zhangyi Hu