

- LM-based recommender have been widely explored.
 - Extensive world knowledge and strong reasoning ability.
- Existing LM-based recommenders format recommendation as language generation task.
 - Convert user sequence into language prompt.
 - Pair sequence with target positive item.
 - Train with language modeling loss.

SFT can't fully utilize preference data. Lack of ranking information.

S-DPO

Building on SFT, S-DPO:

- We make progress on aligning LMs to recommendations by introducing alignment stage, inspired by LM paradigm.
- Instill ranking information into LM in the light of DPO.
- Generalize DPO to Softmax-DPO, utilizing multi-negative preference data.

S-DPO

- Derivation of S-DPO:
 - DPO is derived from Bradley-Terry model and Plackett-Luce model.

 $p^*(y_1 \succ y_2 \mid x) = \frac{\exp\left(r^*(x, y_1)\right)}{\exp\left(r^*(x, y_1)\right) + \exp\left(r^*(x, y_2)\right)}.$ $p^*(\tau \mid y_1, \dots, y_K, x) = \prod_{k=1}^K \frac{\exp(r^*(x, y_{\tau(k)}))}{\sum_{j=k}^K \exp(r^*(x, y_{\tau(j)}))}$

• Generalized from Plackett-Luce model, a preference distribution of multi-negative settings can be derived, which takes the following form:

$$p^*(e_p \succ e_d, \forall e_d \in \mathcal{E}_d | x_u) = \frac{\exp(r(x_u, e_p))}{\sum_{j=1}^K \exp(r(x_u, e_j))}.$$

• The loss for multi-negative preference alignment can be derived by replacing Bradley-Terry model with our multi-negative preference distribution:

$$\mathcal{L}_{\mathrm{S-DPO}}(\pi_{\theta};\pi_{\mathrm{ref}}) = -\mathbb{E}_{(x_u,e_p,\mathcal{E}_d)\sim\mathcal{D}}\left[\log\sigma\left(-\log\sum_{e_d\in\mathcal{E}_d}\exp\left(\beta\log\frac{\pi_{\theta}(e_d|x_u)}{\pi_{\mathrm{ref}}(e_d|x_u)} - \beta\log\frac{\pi_{\theta}(e_p|x_u)}{\pi_{\mathrm{ref}}(e_p|x_u)}\right)\right)\right].$$

S-DPO

- Theoretical Analysis:
 - Connect BPR loss with DPO loss

$$\mathcal{L}_{\text{BPR}} = -\mathbb{E}_{(u,i_p,i_d)} \left[\log \sigma \left(f(u,i_p) - f(u,i_d) \right) \right],$$
$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(x_u,e_p,e_d)} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(e_p|x_u)}{\pi_{\text{ref}}(e_p|x_u)} - \beta \log \frac{\pi_{\theta}(e_d|x_u)}{\pi_{\text{ref}}(e_d|x_u)} \right) \right],$$

• Connect sofmtax loss with S-DPO loss

$$\mathcal{L}_{\text{softmax}} = -\mathbb{E}_{(u,i_p,\mathcal{I}_d)} \left[\log \sigma \left(-\log \sum_{i_d \in \mathcal{I}_d} \exp\left(f(u,i_d) - f(u,i_p)\right) \right) \right].$$
$$\mathcal{L}_{\text{S-DPO}}(\pi_{\theta};\pi_{\text{ref}}) = -\mathbb{E}_{(x_u,e_p,\mathcal{E}_d)\sim\mathcal{D}} \left[\log \sigma \left(-\log \sum_{e_d \in \mathcal{E}_d} \exp\left(\beta \log \frac{\pi_{\theta}(e_d|x_u)}{\pi_{\text{ref}}(e_d|x_u)} - \beta \log \frac{\pi_{\theta}(e_p|x_u)}{\pi_{\text{ref}}(e_p|x_u)} \right) \right) \right].$$

• Gradient Analysis

$$\nabla_{\theta} \mathcal{L}_{\mathrm{S-DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = -\beta \mathbb{E}_{(x_{u}, e_{p}, \mathcal{E}_{d})} \left[\underbrace{\sigma \left(\log \sum_{e_{d} \in \mathcal{E}_{d}} \exp(g(e_{d}, e_{p}, x_{u})) \right)}_{\text{higher weight when reward deviates from preference}} \cdot \left[\nabla_{\theta} \log \pi_{\theta}(e_{p} | x_{u}) - \sum_{e_{d} \in \mathcal{E}_{d}} \frac{\nabla_{\theta} \log \pi_{\theta}(e_{d} | x_{u})}{\sum_{e_{d}' \in \mathcal{E}_{d}} \exp(g(e_{d}', e_{d}, x_{u}))} \right] \right]$$

higher weight when reward is larger

• S-DPO achieves significant improvements in sequential recommendations.

Table 1: The performance comparison on three real-world datasets. The improvement achieved by S-DPO is significant (*p*-value << 0.05).

		LastFM			Goodreads			MovieLens		
		HR@1	ValidRatio	Rel.Ipv	HR@1	ValidRatio	Rel.Ipv	HR@1	ValidRatio	Rel.Ipv
Traditional	GRU4Rec [45]	0.3867	1.0000	70.91%	0.2616	1.0000	153.36%	0.3750	1.0000	40.35%
	Caser [46]	0.4174	1.0000	58.34%	0.2233	1.0000	196.82%	0.3861	1.0000	36.31%
	SASRec [47]	0.3581	1.0000	84.56%	0.2233	1.0000	196.82%	0.3444	1.0000	52.82%
LM-based	LLaMA2 [31]	0.0233	0.3845	2736.48%	0.0246	0.3443	2594.31%	0.0421	0.4421	1150.12%
	ChatRec [51]	0.3306	1.0000	99.91%	0.3770	1.0000	75.81%	0.2000	0.9895	163.15%
	MoRec [48]	0.2877	1.0000	129.72%	0.1652	1.0000	301.21%	0.2822	1.0000	86.50%
	TALLRec [13]	0.4983	0.9573	32.63%	0.4180	0.9836	58.56%	0.3895	0.9263	35.12%
	LLaRA [18]	0.5292	0.9950	24.89%	0.4508	0.9918	47.03%	0.4737	0.9684	11.10%
Ours	S-DPO	0.6609	0.9900	-	0.6628	0.9992	-	0.5263	0.9895	-

- Mining hard negatives brings effective gradients.
- Multi-negatives can provide more reward to preferred items.

• The superiority of S-DPO can be generalized to other LM backbones

		LLaMA1-7B		Mistral-7B		Pythia-2.8B	
		HR@1	ValidRatio	HR@1	ValidRatio	HR@1	ValidRatio
LastFM	Vanilla	0.0465	0.5872	0.0633	0.3648	0.0265	0.3648
	Language Modeling	0.5980	0.9980	0.7828	0.9992	0.1611	0.4281
	DPO	0.6084	0.9976	0.7415	0.9964	0.1896	0.4220
	S-DPO (3 negatives)	0.6285	0.9976	0.7679	0.9972	0.1948	0.4689
	S-DPO (8 negatives)	0.6365	0.9988	<u>0.7820</u>	0.9972	0.2200	0.4685
MovieLens	Vanilla	0.0316	0.5158	0.0842	0.6737	0.0421	0.4421
	Language Modeling	0.3895	0.9684	0.4211	0.9895	0.1053	0.5684
	DPO	0.3789	0.9684	0.4421	0.9684	0.1271	0.8449
	S-DPO (3 negatives)	0.4526	0.9474	0.4421	0.9895	0.1271	0.8737
	S-DPO (8 negatives)	0.4526	0.9579	0.4947	0.9895	0.1474	0.8737

Table 4: The performance comparison among three different backbone language models on LastFM and MovieLens.

• S-DPO have comparable effectiveness and better efficiency compared with multi-negative DPO variants

Table 2: Effectiveness comparison between DPO with single negative, a variant of DPO with multiple negatives and S-DPO with the same number of negatives (we set K as 3 to get the performance in this table).

Datasets	Last	FM	Movie	Lens	Goodi	reads	Complexity	
Measure	HitRatio@1	ValidRatio	HitRatio@1	ValidRatio	HitRatio@1	ValidRatio		
DPO-1negative	0.6342	0.9972	0.4947	0.9684	0.6381	0.9900	$\Theta(2C_{\mathcal{M}}S_t)$	
S-DPO- <i>K</i> negative	0.6413 0.6477	0.9964 0.9980	<u>0.4947</u> 0.5263	0.9474 0.9895	<u>0.6628</u> 0.6661	0.9900 0.9950	$\left \begin{array}{c} \Theta(2KC_{\mathcal{M}}S_t)\\ \Theta((K+1)(C_{\mathcal{M}}+1)S_t)\end{array}\right.$	

