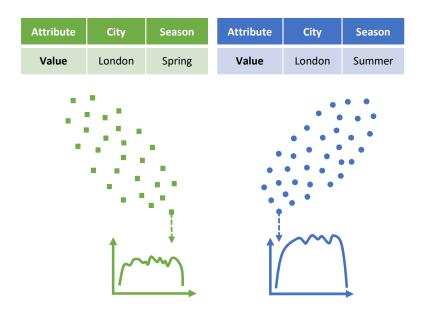


Towards Editing Time Series

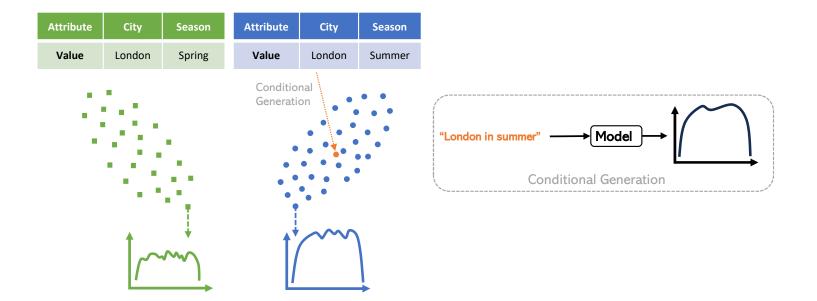
Baoyu Jing^{2*}, Shuqi Gu^{1*}, Tianyu Chen¹, Zhiyu Yang¹, Dongsheng Li³, Jingrui He², Kan Ren^{1†}

¹ShanghaiTech University
²University of Illinois Urbana-Champaign
³Microsoft Research
*Equal contribution. [†]Corresponding author.

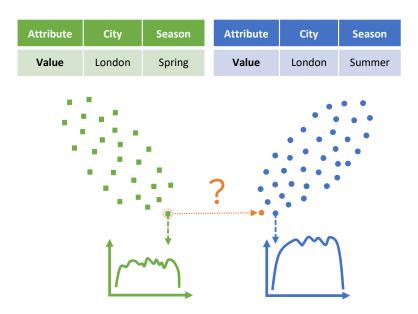


• Background

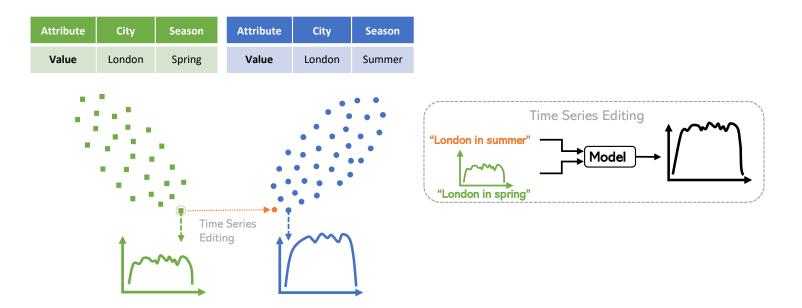
- Problem Formulation
- Methodology
- Experiments
- Conclusion


Time Series Synthesize

- Time series associated with many attributes.
- Real-world time series are sparse and privacy-sensitive.


Conditional Time Series Generation

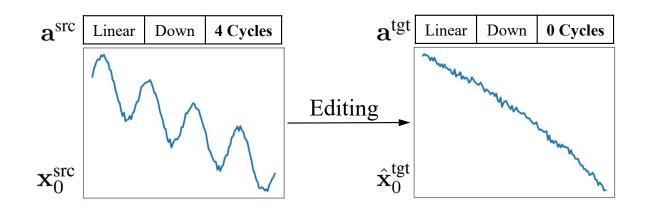
- Synthesize time series based on the condition.
- Do not support sample-level time series manipulation.


Time Series Editing

• Question: given a time series, what would it become if some of its attributes are modified?

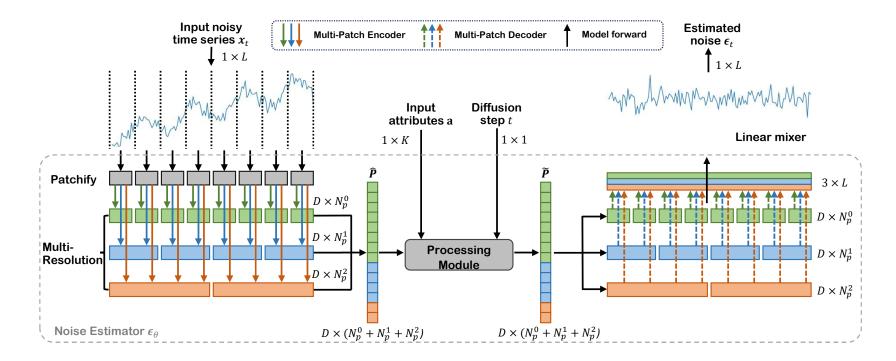
Time Series Editing (Cont.)

• We introduce a novel task – Time Series Editing (TSE). • Edit certain attributes of the given time series sample. • Preserve other information.

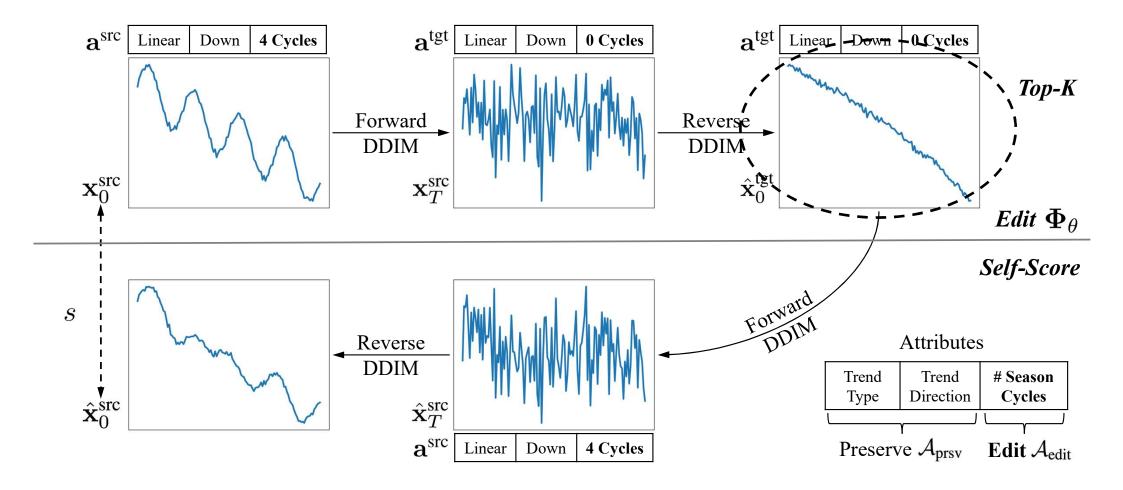

Challenges of Time Series Editing

- The time series data distribution over the attribute space is biased and may not be adequately covered.
 - E.g., in climate data, temperature and humidity are observable while atmospheric pressure variations missing.
- Different attributes influence timeseries at varying resolutions.
 - E.g., trends have a global impact, while seasonality exerts amore localized influence.

- Background
- Problem Formulation
- Methodology
- Experiments
- Conclusion


Time Series Editing

- Generate a target time series $\hat{\mathbf{x}}^{tgt} = \Phi_{\theta}(\mathbf{x}^{src}, \mathbf{a}^{src}, \mathbf{a}^{tgt})$, and
- Modifying the edited attributes A_{edit} , while
- Maintaining the preserved attributes A_{prsv} and other information of \mathbf{x}^{src}


- Background
- Problem Formulation
- Methodology
- Experiments
- Conclusion

Multi-Resolution Noise Estimator

The core component of our proposed diffusion model is the noise estimator ϵ_{θ} . ϵ_{θ} captures the multi-resolution interactions between time series & attributes

Bootstrap Learning Algorithm

- Background
- Problem Formulation
- Methodology
- Experiments
- Conclusion

Evaluation Metrics

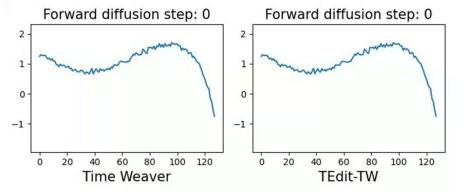
- Editability: for edited attributes: CTAP & RaTS
- Preservability: for preserved attributes: CTAP & |RaTS|
- For data with ground truth: MSE & MAE

Log Ratio of Target-to-Source (RaTS \uparrow and |RaTS| \downarrow)

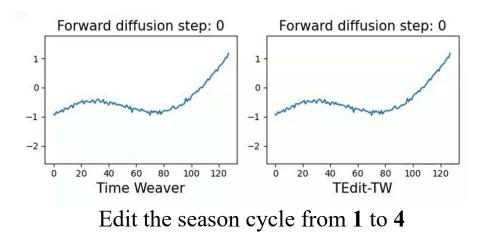
$$RaTS = log \frac{P(a_k^{tgt} | \hat{x}_0^{tgt})}{P(a_k^{tgt} | x_0^{src})}$$

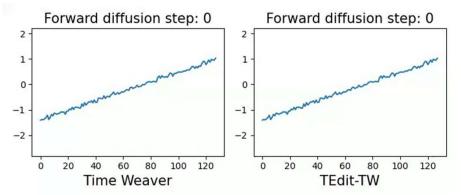
Contrastive Time series-Attribute Pretraining (CTAP[↑])

 $CTAP = Sim(\hat{x}_0^{tgt}, a_k^{tgt})$


Results

	Synthetic							Air				Motor		
		erall ↓MAE		ted ↑CTAP	Prese ↓IRaTSI			ited ↑CTAP	Prese ↓IRaTSI			ited ↑CTAP	Prese ↓IRaTSI	
CSDI Time Weaver													0.1597 0.1520	
TEdit-CSDI TEdit-TW													0.1580 0.1571	


Table 1: Averaged performance over all finetuning sets for Synthetic (left), Air (middle), and Motor (right). "Edited" and "Preserved" are the average results of all edited and preserved attributes.


Our method perform better than baselines both on editing and preserving the attributes

Results

Edit the trend type from exponential to logarithm

Edit the trend direction from **up** to **down**

Our method perform better than baselines both on editing and preserving the attributes

Ablation study

Overall Edited Preserved Edited Preserved Edited Preserved Edited Edi	Preserve AP ↓IRaTSI ↑C	
TE4% TW CT 0 1022 0 0600 1 0165 0 7001 0 0004 0 9650 0 0	1040 - 1040 - 1040	e nu
TEdit-TW 0.1233 0.2622 1.0165 0.7991 0.0984 0.8650 -	- 348 0.1571 0.	- .6621
w/o BS 0.1376 0.2793 1.0127 0.7952 0.0962 0.8632 0.9524 0.3792 0.1839 0.6418 0.1113 0.42 w/o BS & MR 0.1454 0.2898 0.9030 0.6943 0.1169 0.8292 0.8956 0.3266 0.1866 0.6299 0.0978 0.44		

Ground Truth source and target pairs, BootStrap and Multi-Resolution. Results are averaged over all finetuning sets. "Edited" and "Preserved" are the average results of all edited and preserved attributes.

Both multi-resolution architecture and bootstrapped training algorithm improve the performance of editing and preserving attributes.

- Background
- Problem Formulation
- Methodology
- Experiments
- Conclusion

Conclusion

Contribution

1. We introduce a novel task called **Time Series Editing (TSE)** for **sample-level time series manipulation.**

2. We introduce a novel **diffusion-based** method: **TEdit**, which is equipped with:

- A bootstrap learning algorithm for the problem of data coverage.
- A multi-resolution noise estimator for the multi-scale interaction between time series and attributes.
- Application
 - Climate monitoring, healthcare, and urban management

Thanks :)

