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Time Series Synthesize

• Time series associated with many attributes.

• Real-world time series are sparse and privacy-sensitive.
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Conditional Time Series Generation

• Synthesize time series based on the condition.

• Do not support sample-level time series manipulation.
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Time Series Editing

• Question: given a time series, what would it become if some 
of its attributes are modified?
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Time Series Editing (Cont.)

• We introduce a novel task – Time Series Editing (TSE).
oEdit certain attributes of the given time series sample.
oPreserve other information.

SeasonCityAttribute 

SpringLondonValue

SeasonCityAttribute 

SummerLondonValue

“London in summer”

Model

“London in spring”

Time Series Editing

Time Series 
Editing



Challenges of Time Series Editing

• The time series data distribution over the attribute space is 
biased and may not be adequately covered.
• E.g., in climate data, temperature and humidity are observable 

while atmospheric pressure variations missing.

• Different attributes influence timeseries at varying resolutions.
• E.g., trends have a global impact, while seasonality exerts amore 

localized influence.
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Time Series Editing
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• Generate a target time series , and

• Modifying the edited attributes , while

• Maintaining the preserved attributes and other information of 

Editing
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Multi-Resolution Noise Estimator
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The core component of our proposed diffusion model is the noise estimator 𝝐ఏ.
𝝐ఏ captures the multi-resolution interactions between time series & attributes



Bootstrap Learning Algorithm
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Evaluation Metrics

• Editability: for edited attributes: CTAP & RaTS

• Preservability: for preserved attributes: CTAP & |RaTS| 

• For data with ground truth: MSE & MAE

Log Ratio of Target-to-Source (RaTS and |RaTS| )

(ୟౡ
౪ౝ౪

|୶ොబ
౪ౝ౪

)

(ୟ
ౡ
౪ౝ౪

|୶బ
౩౨ౙ)

Contrastive Time series-Attribute Pretraining (CTAP )


୲୲

୩
୲୲



Results

Our method perform better than baselines both on editing and preserving the attributes



Results

Our method perform better than baselines 
both on editing and preserving the 
attributes

Edit the trend type from exponential to logarithm Edit the trend direction from up to down

Edit the season cycle from 1 to 4



Ablation study

Both multi-resolution architecture and bootstrapped training algorithm improve the performance of 
editing and preserving attributes.
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Conclusion

• Contribution
1. We introduce a novel task called Time Series Editing (TSE) for 
sample-level time series manipulation.
2. We introduce a novel diffusion-based method: TEdit, which is 
equipped with:

• A bootstrap learning algorithm for the problem of data coverage.
• A multi-resolution noise estimator for the multi-scale interaction 

between time series and attributes.

• Application
• Climate monitoring, healthcare, and urban management
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