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Hello everyone. My name is [Your Name], from [XX].
 and I’m here to present our work on **Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion**.



Collective motion of active matter
• Active matter: 

Can self-propel by consuming 
energy in environment

• Collective motion: 
Group of active matter entities shows
self-organized behavior through interaction

• In active matter physics,
collective motion is often
modeled by position and 
polarity of entities

Fish School

Cavagna, A. et al. PNAS (2010).

Bird Flock

Vicsek, T. et al. PRL (1995).
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Let’s begin with some important definitions.
Active matter refers to systems that can self-propel by consuming energy from their environment. Examples include fish, birds, or even cells in biology. These systems are driven by internal forces, unlike passive matter, which only reacts to external forces.
**Collective motion** occurs when individual entities interact with each other, leading to self-organized behavior. For instance, in a fish school, each fish adjusts its movement based on neighboring fish, resulting in synchronized motion.
In active matter physics, such dynamics has been modeled as local interactions which adjust the position and polarity of entities.



Non-reciprocal mixed-species collective motion
• Mixed-species:

Morphogenesis requires variable cell types 
to make different organs

• Non-reciprocal: 
Interactions can affect internal states such as polarity
 can be non-reciprocal

Morphogenesis of Dictyostelium discoideum
Fujimori, T., et al. PNAS (2019).
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However, accurately modeling these interactions becomes complex when dealing with mixed-species systems.
In morphogenesis where multiple organs are made, most of the targets are mixture of multiple cell types.
This is an example; a cellular slime mold shows two types of cells. These cells show separation and self-organization through type-dependent movement and interaction.
In many biological systems, interactions affect internal states. Such interaction can in principle be non-reciprocal. Especially, mixed-species systems can easily have non-reciprocal interaction, by having type-dependent sensitivity.
Our primary goal is to develop a framework that estimates **non-reciprocal interactions** in **mixed-species systems**. 



Estimating the rules for multi-body dynamics
• Existing models modeled self-propulsion 

and interaction in several ways

• Rules are estimated by minimizing
the predicting error of trajectories

• Not applied to 
mixed-species systems

Ruiz-Garcia, M. et al. PRE (2024).

Brückner, D. B. et al. PRL (2020).

Decompose forces into 
basal function series

Velocity is predicted by
deep neural network
that receive a pair of 
polarities
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Several methods have been proposed to estimate the rules from trajectories.
This has been done by placing parametric model or deep neural network model and optimizing the parameters so that they predict the given trajectories well.
However, none of them have been applied to mixed-species systems.



Our framework
• General form of 

equation of motion
in multi-body systems

• Truncated at 
pairwise interaction

• Neural ODE calls Graph neural network (GNN)
at each calculation step

• GNN updates edges with 
pre-defined rule and returns
total force
(improved from GraphODE)

𝑧𝑧𝑖𝑖 𝑡𝑡 = 𝑥𝑥𝑖𝑖 𝑡𝑡 ,𝑦𝑦𝑖𝑖 Dynamic (𝑥𝑥) and static (𝑦𝑦) variables

Poli, M. et al. arXiv (2021).
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Thus we propose a new framework to deal with mixed-species collective motion. 
In our framework, we just assume a general form of equation of motion which is truncated at pairwise interaction, meaning that this exclude three-body interaction or more.
Both self-propulsion and interaction are assumed to depend on static variable, which models species type.
This equation is solved by neural ODE, which is connected to Graph neural network (GNN). GNN updates edge structure according to pre-defined edge construction rule and returns summation of self-propulsion and interactions.




Method for estimation

• Neural networks are 
trained to predict the 
trajectories in given 
model

Given Model Training Data

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠
1 ,𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠

2 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝑡𝑡 𝑖𝑖=1,…,𝑁𝑁

Neural Network Model

𝐹𝐹𝑁𝑁𝑁𝑁
1 𝜃𝜃 ,𝐹𝐹𝑁𝑁𝑁𝑁

2 𝜃𝜃

Predicted Dynamics
𝑧𝑧𝑁𝑁𝑁𝑁𝑖𝑖 𝜃𝜃; 𝑡𝑡0 + 𝜏𝜏 𝑖𝑖=1,…,𝑁𝑁

Simulate

Simulate

Sample 𝑡𝑡0

Evaluate Loss

Loss Function
ℒ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝑡𝑡0 + 𝜏𝜏 , 𝑧𝑧𝑁𝑁𝑁𝑁𝑖𝑖 𝜃𝜃; 𝑡𝑡0 + 𝜏𝜏

Sample 𝑡𝑡0 + 𝜏𝜏

Update 𝜃𝜃 with ∇𝜃𝜃ℒ

Fully connected network Scaling

↑ When Dim=2.

𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼
𝐼𝐼

Fully connected network
Depth: 3
Width: 128
Activation: ELU

𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = max(𝑥𝑥, 𝑒𝑒𝑥𝑥 − 1)
Scaling Layer

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥⃗𝑥 = 𝑒𝑒𝐴𝐴𝑥⃗𝑥 + 𝐵𝐵
Initial: 𝐴𝐴 = −20, 𝐵𝐵 = 0

Optimizer : LAMB
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Estimation is done by minimizing the prediction error of trajectories.
In this paper we started from making a training dataset, conducting numerical simulation on a given force model.
Then we remodeled the forces by deep neural networks, which are used to predict a future state t0+\tau from a snapshot t0 in the training data. 
The parameters in deep neural networks are optimized so that this predicts the true future in the training data, and finally we obtain optimized functions of self-propulsion and interaction.



Training data 1
• Underdamped Brownian Motion 

with Harmonic Interaction

𝑥𝑥𝑖𝑖 = 𝑟𝑟𝑖𝑖 , 𝑣𝑣𝑖𝑖

𝑦𝑦𝑖𝑖 =

Weak friction
𝛾𝛾 = 1 × 10−2

Strong friction
𝛾𝛾 = 1 × 10−1

Position, Velocity
None

𝑑𝑑𝑟𝑟𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑,

𝑑𝑑𝑣𝑣𝑖𝑖 = 𝐹𝐹𝑁𝑁𝑁𝑁,𝑣𝑣
1 𝑧𝑧𝑖𝑖;𝜃𝜃 + �

𝑗𝑗 𝑠𝑠.𝑡𝑡. 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑡𝑡)

𝐹𝐹𝑁𝑁𝑁𝑁,𝑣𝑣
2 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗;𝜃𝜃 𝑑𝑑𝑑𝑑

 Trained for loss function (normalized prediction error of 𝑟𝑟𝑖𝑖 , 𝑣𝑣𝑖𝑖 )

Movies 

friction harmonic interaction
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We tested our model with two different datasets:
This simpler dataset models a system where entities interact with harmonic forces, providing a baseline for our framework. 




Estimation for training data 1

MSE
3.6×10-3

MSE
5.1×10-3

MSE
1.7

MSE
2.2×10-2

MSE
1.2×10-2

MSE
2.2×10-2

Estimated Dynamics Training Data

Movies 
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Here, in brief, we found that our framework could successfully learn forces from the trajectories when hyperparameters were properly adjusted.




Training data 2
• Mixed Species Collective Motion 

with Overdamped Self-propulsion

𝑥𝑥𝑖𝑖 = 𝑟𝑟𝑖𝑖 ,𝜙𝜙𝑖𝑖

𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑖𝑖 ∈ 0,1

𝛼𝛼𝐶𝐶𝐶𝐶 0 = 0.1
𝛼𝛼𝐶𝐶𝐶𝐶 1 = 0.9
𝛼𝛼𝐶𝐶ℎ 0 = 2.0
𝛼𝛼𝐶𝐶𝐶 1 = 0.2

𝛼𝛼𝐶𝐶𝐶𝐶 0 = 0.9
𝛼𝛼𝐶𝐶𝐶𝐶 1 = 0.5
𝛼𝛼𝐶𝐶ℎ 0 = 0.5
𝛼𝛼𝐶𝐶𝐶 1 = 0.5

Position, Polarity angle
Species type

Movies 

exclusion volume

contact following1 chemotaxis2

1Hiraiwa, T. PRL (2020). 2Liebchen, B. & Löwen, H. Chemical kinetics: Beyond the textbook, 493–516 (2019).
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Another dataset represents a more complex scenario with multiple species.
Here, the particles interact with contact following and chemotaxis, each having type-dependent sensitivity.



Estimation for training data 2

MSE
1.5×10-3

MSE
2.0×10-3

MSE
4.5×10-7

MSE
3.8×10-6

MSE
5.6×10-1

MSE
1.9×10-1

MSE
2.4×10-1

MSE
5.4×10-2

Estimated Dynamics Training Data

𝑑𝑑𝑟𝑟𝑖𝑖 = 𝐹𝐹𝑁𝑁𝑁𝑁,𝑟𝑟
1 𝑧𝑧𝑖𝑖;𝜃𝜃 + �

𝑗𝑗 𝑠𝑠.𝑡𝑡. 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑡𝑡)

𝐹𝐹𝑁𝑁𝑁𝑁,𝑟𝑟
2 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗;𝜃𝜃 𝑑𝑑𝑑𝑑,

𝑑𝑑𝜙𝜙𝑖𝑖 = 𝐹𝐹𝑁𝑁𝑁𝑁,𝜙𝜙
1 𝑧𝑧𝑖𝑖;𝜃𝜃 + �

𝑗𝑗 𝑠𝑠.𝑡𝑡. 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑡𝑡)

𝐹𝐹𝑁𝑁𝑁𝑁,𝜙𝜙
2 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗;𝜃𝜃 𝑑𝑑𝑑𝑑

 Trained for loss function 
(normalized prediction error of 𝑟𝑟𝑖𝑖 ,𝜙𝜙𝑖𝑖 )

Movies 
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For both datasets, we evaluated accuracy to predict the forces of the entities. Performance was measured using Mean Squared Error (MSE), and we found that our model could accurately approximate the force functions. 
These forces successfully reproduced the self-organizing dynamics of particles over time, as demonstrated in the videos.




Conclusion
• GNN + neuralODE can learn forces from trajectories 

Project Page

Paper

Thank you!

Proposed 
Framework

Self-propulsion,
Spring-like interaction,
Contact following
+ Chemotaxis

Known- or
Unknown-
Self-propulsion,
Interaction

Dataset
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Fujimori, T. et al. PNAS (2019).

Estimated
Equation of motion
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In conclusion, our work demonstrates that by integrating GNN with Neural ODEs, we can effectively model non-reciprocal interactions that drive collective motion in multi-species systems. 
This method offers a powerful tool for capturing the dynamics of complex systems, ranging from biological processes like morphogenesis to other forms of collective behavior in active matter.
Thank you for your attention.
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