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e Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud P = {Xk}szlz
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e TheD'Orsogna model [D’'Orsogna etal.’06] describes the dynamics of individual entities x

mxk = (a—pIxF|2) %K — 2V, 3, U (K=, C,, 1)

AttractionERepuIsion

e Solvingthe inverse problem, i.e., predicting 8 = (m,«,C,,1,), isinherently difficult due to:
o the large number of observed entities, and

o the difficulty of identifying individual motion trajectories x* (#).
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Motivation

e Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud P
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e To predict the models parameters B, understanding the evolving
behavioral patterns of a collective is key.

e Hence, we learn the dynamics in the topology of time evolving point clouds.
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® Forlearning, we consider datasets of N time-evolving 3D point clouds P1, ...
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® Forlearning, we consider datasets of N time-evolving 3D point clouds P1, ..., PN;e.g.,
PTl = {XTl}k 1 C R3
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(1) individual trajectories of points x"* are governed by a coupled equation of motion

_ kK :
x5 = fi (1", %)
2) P control such motions and specify (local) interactions among neighboring points, and

(3) the dynamicsinthe topology of the point clouds are determined by a simpler latent process Z.
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(1) individual trajectories of points x"* are governed by a coupled equation of motion

_ kK :
x5 = fi (1", %)
2) P control such motions and specify (local) interactions among neighboring points, and

(3) the dynamicsinthe topology of the point clouds are determined by a simpler latent process Z.

We seek to learn Z and thus predict B!




Neural persistence dynamics

e Foreachsequence P, we pre-compute topological features per time point, by...




Neural persistence dynamics

For each sequence P, we pre-compute topological features per time point, by...

(1) applying Vietoris-Rips persistent homology computation, Rips, and




Neural persistence dynamics

For each sequence P, we pre-compute topological features per time point, by...

(1) applying Vietoris-Rips persistent homology computation, Rips, and

(2) vectorizing the persistence diagrams, dgm(Rips), using Hofer etal. "19.




Neural persistence dynamics

For each sequence P, we pre-compute topological features per time point, by...

(1) applying Vietoris-Rips persistent homology computation, Rips, and

(2) vectorizing the persistence diagrams, dgm(Rips), using Hofer etal. "19.

e Prior works predominantly extracted one topological summary over time.

e We learn alatent process Z whose paths {zT], }jcan (i) reproduce the vectorizations,
and (ii) serve as input for predicting .
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e 7 ismodeledviaaneural ODE by Rubanova etal. 19 and learned in a variational Bayes regime.
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(1) anencoder network (Encg),

(2) an ODE solver,

(3) asuitable decoder network (Dec.,), and

(4) asuitable regression network (Reg, ) .




A model incarnation

e 7 ismodeledviaaneural ODE by Rubanova etal. 19 and learned in a variational Bayes regime.

® |nthissetting one chooses...
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e Themodelistrained upon choosinga prior p(z,; ) and maximizing (ELBO — loss,,.,), i.e.,

aux)
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@® VE 1 @ SMAPE |

Ours 0.851+0.008 0.097+40.005
dorsogna-10k PSK 0.82840.016 0.0964-0.006
Crocker Stacks 0.746+0.023 0.150+0.005

Ours 0.5794+0.034 0.146+40.006

vicsek-10k PSK 0.4664+0.009 0.173+0.003
Crocker Stacks 0.3454+0.005 0.190+0.001

Some results

Listed are parameter regression results from two models [D'Orsogna et al. ‘06 & Vicsek et al. 95]

for collective behavior with | 8] = 4, resp.
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Listed are parameter regression results from two models [D'Orsogna et al. ‘06 & Vicsek et al. 95]
for collective behavior with | 8] = 4, resp.

Each dataset contains 10,000 point cloud sequences simulated using SiSyPHE [Diez '21].

We compare against path signature kernel (PSK) [Ciusti & Lee '23] & crocker stacks [Xian et al. '22]
and report Variance Explained (VE) and Symmetric Mean Absolute Percentage Error (SMAPE).

Overall, Neural Persistence Dynamics (Ours) largely outperforms the state-of-the-art in all tasks.
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Thanks for your attention!

Come see us at our postetr.
Fr.13 Dec11a.m. PST—2 p.m. PST @ Poster Session 5

) Full source code is available!
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