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Solving the inverse problem, i.e., predicting 𝜷 = (𝑚, 𝛼, 𝐶𝑟, 𝑙𝑟), is inherently difficult due to:
the large number of observed entities, and
the difficulty of identifying individual motion trajectories x𝑘(𝑡).
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The D'Orsogna model [D’Orsogna et al. ’06] describes the dynamics of individual entities x𝑘

Solving the inverse problem, i.e., predicting 𝜷 = (𝑚, 𝛼, 𝐶𝑟, 𝑙𝑟), is inherently difficult due to:
the large number of observed entities, and
the difficulty of identifying individual motion trajectories x𝑘(𝑡).

To predict the models parameters 𝜷, understanding the evolving

Hence, we learn the dynamics in the topology of time evolving point clouds.
behavioral patterns of a collective is key.
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Problem setting

We seek to learn from spatiotemporal data, i.e., from 𝑁 sequences of 3D point clouds

P1, … ,P𝑁; e.g.:

P 𝑖:

∗𝜏 𝑖
0 𝜏 𝑖

1 𝜏 𝑖
2 𝜏 𝑖

𝑗 𝜏 𝑖
𝐽 time

P𝜏 𝑖
1

= {x0
𝜏 𝑖

1
, … , x𝑀

𝜏 𝑖
1
} ⊂ ℝ3

We seek to learn from spatiotemporal data, i.e., from 𝑁 sequences of 3D point clouds

𝐏1, … , 𝐏𝑁; e.g.:

𝐏𝑖:

∗𝜏 𝑖
0 𝜏 𝑖

1 𝜏 𝑖
2 𝜏 𝑖

𝑗 𝜏 𝑖
𝐽 time

P𝜏 𝑖
1

= {x0
𝜏 𝑖

1
, … , x𝑀

𝜏 𝑖
1
} ⊂ ℝ3

For learning, we consider datasets of 𝑁 time-evolving 3D point cloudsP1, … ,P𝑁; e.g.,

P :

𝜏0 𝜏1 𝜏2 𝜏𝑗 𝜏𝐽 time

P𝜏1
= {x𝑘

𝜏1
}𝐾

𝑘=1 ⊂ ℝ3



Problem setting

(2) 𝜷 control such motions and specify (local) interactions among neighboring points, and

(1) individual trajectories of points x𝑘 are governed by a coupled equation of motion
We assume...

(3) the dynamics in the topology of the point clouds are determined by a simpler latent process Z.
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For each sequenceP , we pre-compute topological features per time point, by...

(1) applying Vietoris-Rips persistent homology computation, Rips, and
(2) vectorizing the persistence diagrams, dgm(Rips), using Hofer et al. ’19.

We learn a latent process 𝐙 whose paths {𝐳𝜏𝑗
}𝑗 can (i) reproduce the vectorizations,

and (ii) serve as input for predicting 𝜷.

Prior works predominantly extracted one topological summary over time.
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Some results
⊘ VE ↑ ⊘ SMAPE ↓

Ours 0.851±0.008 0.097±0.005
dorsogna-10k PSK 0.828±0.016 0.096±0.006

Crocker Stacks 0.746±0.023 0.150±0.005
Ours 0.579±0.034 0.146±0.006

vicsek-10k PSK 0.466±0.009 0.173±0.003
Crocker Stacks 0.345±0.005 0.190±0.001

Listed are parameter regression results from two models [D’Orsogna et al. ’06 & Vicsek et al. ’95]
for collective behavior with |𝜷| = 4, resp.
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Each dataset contains 10,000 point cloud sequences simulated using SiSyPHE [Diez ’21].

We compare against path signature kernel (PSK) [Giusti & Lee ’23] & crocker stacks [Xian et al. ’22]

Overall, Neural Persistence Dynamics (Ours) largely outperforms the state-of-the-art in all tasks.

and report Variance Explained (VE) and Symmetric Mean Absolute Percentage Error (SMAPE).



(3) outperforms the state-of-the-art across numerous regression tasks.
(2) is trained with fixed hyperparameters across all datasets, and

In summary, Neural Persistence Dynamics...

(1) scales to a large number of observation sequences,
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