

KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge

Pengcheng Jiang, Lang Cao, Cao Xiao*, Parminder Bhatia*, Jimeng Sun, and Jiawei Han University of Illinois at Urbana Champaign GE HealthCare*

> Patrick (Pengcheng) Jiang CS Ph.D. at UIUC

Motivation & Problem

Challenges:

- Structure-based KGE methods are limited to graph structure
- PLM-based methods are computationally expensive
- Need to leverage LLM knowledge efficiently

Our Solution:

- Fine-tune KG with LLM instead of finetuning LLM with KG
- Combine advantages of both approaches

KG-FIT Framework

Datasets

• Datasets

Table 1: **Datasets statistics.** #Ent./#Rel: number of entities/relations. #Train/#Valid/#Test: number of triples contained in the training/validation/testing set.

Dataset	#Ent.	#Rel.	#Train	#Valid	#Test		
FB15k-237 YAGO3-10	14,541 123,182	237 37	272,115 1,079,040	17,535 5,000	20,466 5,000		
PrimeKG	10,344	11	100,000	3,000	3,000		

• Metrics

Mean Rank (MR):

- Measures the average rank of true entities. Mean Reciprocal Rank (MRR):
- Averages the reciprocal ranks of true entities. **Hits@N:**
- Measures the proportion of true entities in the top N predictions.

FB15K-237:

• A subset of Freebase, a large collaborative knowledge base focusing on common knowledge.

YAGO3-10:

• A subset of YAGO, a large knowledge base derived from multiple sources including Wikipedia, WordNet, and GeoNames.

PrimeKG:

• A biomedical KG integrates 20 biomedical resources, detailing 17,080 diseases through 4,050,249 relationships. <u>In this study, we extract a subset of</u> <u>PrimeKG</u>, which contains 106,000 triples.

Main Results

- KG-FIT consistently and significantly outperforms state-of-the-art PLM-based and structure-based methods across all datasets and metrics.
- (2) With LLM-guided hierarchy refinement, KG-FIT achieves huge performance gains compared to the base models and KG-FIT with seed hierarchy.
- (3) KG-FIT is more effective for smaller KGs, e.g., more performance gains on PrimeKG (~ 0.1 million triples) than YAGO3-10 (~1 million triples).

	FB15K-237						YAGO3-10					PrimeKG						
PLM-based Embedding Methods																		
M	odel	PLM	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	
KG-BE	RT [22]*	BERT	153	.245	.158	-	.420	-	-	-	-	_	-	-	-	-	-	
StAR [23]*		RoBERTa	117	.296	.205	-	.482	-	-	-	-	-	-	-	-	-	-	
PKGC [28]		RoBERTa	184	.342	.236	.441	.525	1225	.501	.426	.596	.660	219	.485	.391	.565	.625	
C-LMKE [26]*		BERT	141	.306	.218	-	.484	-	-	-	-	-	-	-	-	-	-	
KGT5 [25]*		T5	-	.276	.210	-	.414	-	.426	.368	-	.528	-	-	-	-	-	
KG-S2S [24]*		T5	-	.336	.257	-	.498	-	-	-	-	-	-	-	-	-	-	
SimKGC [27]		BERT	-	.336	.249	-	.511	-	_	-	-	-	168	.527	.524	.679	.742	
CSProm-KG [32]		BERT	-	.358	.269	-	.538	1145	.488	.451	.624	.675	157	.540	.492	.652	.745	
		TE-3-S	2044	.023	.002	.035	.068	22741	.009	.000	.016	.024	5581	.000	.000	.000	.000	
LLM Emb. (zero-shot)	. (zero-shot)	TE-3-L	1818	.030	.004	.048	.085	18780	.015	.000	.019	.032	4297	.001	.000	.000	.000	
Structure-based Embedding Methods																		
Model	Frame	\mathcal{H}	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	
TransE KG-FIT	Base [14]	_	233	.287	.192	.389	.478	1250	.500	.398	.626	.685	182	.048	.000	.043	.124	
		Seed	142	345	242	457	547	052	520	420	638	700	80	208	000	315	516	
	KG-FIT	LHR	122	362	264	478	568	529	544	463	650	705	69	334	.000	342	536	
		LIIK	122		.204	.+70	.500	547	.544	.+05	.050	.705	05	.554	.000	.542	.550	
Di-M-It	Base [15]		283	.260	.163	.349	.437	5501	.451	.365	.553	.615	174	.577	.475	.699	.782	
DisMult	KG_FTT	Seed	184	.316	.198	.415	.512	963	.486	.413	.591	.673	107	.589	.495	.715	.799	
		LHR	154	.331	.226	.433	.529	861	.527	.441	.636	.682	78	.617	.526	.747	.813	
	Base [16]	—	347	.252	.161	.344	.439	6681	.463	.384	.560	.612	202	.614	.522	.728	.789	
ComplEx	X KA FIT	Seed	201	.325	.223	.436	.523	997	.491	.422	.603	.669	94	.638	.548	.767	.823	
	KG-FII	LHR	151	.344	.247	.458	.551	842	.544	.460	.646	.697	82	.651	.566	.772	.835	
ConvE	Base [17]	_	341	.312	.224	.401	.508	1105	.529	.451	.619	.673	144	.516	.456	.645	.760	
	KG-FIT	Seed	181	.318	.237	.411	.521	912	535	455	.628	.685	93	.627	534	.757	.812	
		LHR	177	.318	.241	.415	.525	885	.541	.461	.647	.695	72	.648	.547	.767	.824	
TuckER1	Base [18]	_	363	.320	.230	.417	.505	1110	.529	.454	.633	.690	171	.543	.442	.663	.737	
	. ,	R	Cond	175	220	241	422	501	074	520	150	651	702	-	640	540	770	905
	KG-FIT	Seed	1/5	.330	.241	.433	.521	8/4	.538	.458	.051	.703	6	.640	.542	.770	.805	
		LHK	144	.349	.255	.448	.343	838	.343	.400	.054	.708	02	.048	.550	.119	.820	
pRotatE B	Base[19]	—	188	.310	.205	.399	.502	974	.477	.385	.573	.655	118	.491	.399	.593	.681	
	VC ETT	Seed	160	.355	.257	.461	.558	910	.525	.436	.622	.693	75	.635	.538	.745	.809	
	KG-FII	LHR	119	.371	.277	.483	.572	829	.550	.464	.648	.710	69	.649	.574	.779	.833	
RotatE	Base [19]	_	190	.333	.241	.428	.528	1620	.495	.402	.550	.670	57	.539	.447	.646	.727	
	KG-FIT	Seed	141	.354	.261	.464	.555	790	.529	.440	.643	.708	46	.622	.517	.740	.805	
		LHR	120	.369	.274	.488	.570	744	.563	.475	.658	.722	34	.645	.532	.758	.817	
HAKE B	Base [20]		184	.344	.247	.435	.538	1220	530	.431	.634	.681	95	.595	.515	.708	.760	
		Seed	162	259	269	470	562	051	541	155	617	702	00	628	540	747	000	
	KG-FIT	LHR	137	.358 .362	.268 .275	.470 .485	.563 .572	854 810	.541 .568	.455 .474	.647 .662	.703 .718	82 42	.638 .682	.540 .605	.747 .785	.808 .835	

Visualization

Conclusion

We introduced KG-FIT, a novel framework that enhances knowledge graph (KG) embeddings by integrating open-world entity knowledge from Large Language Models (LLMs).

- KG-FIT effectively combines the knowledge from LLM and KG to preserve both global and local semantics, achieving state-of-the-art link prediction performance on benchmark datasets.
- It shows significant improvements in accuracy compared to the base models. Notably, KG-FIT can seamlessly integrate knowledge from any LLM, enabling it to evolve with ongoing advancements in language models.
- Future work will explore using the KG-FIT embedding for precise knowledge retrieval, which can set a strong foundation for retrieval augmented generation (RAG) by LLMs.

Thank you!

Patrick Jiang