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Motivation & Problem
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Previous: Fine-tune LLM with KG

KG-FIT: Fine-tune KG with LLM
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Challenges:
- Structure-based KGE methods are limited to graph structure

- PLM-based methods are computationally expensive
- Need to leverage LLM knowledge efficiently

Our Solution:
- Fine-tune KG with LLM instead of fine-

tuning LLM with KG
- Combine advantages of both approaches
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Two-Stage Approach:

1. LLM-Guided Hierarchy Construction
   • Entity description generation
   • Seed hierarchy construction
   • LLM-guided refinement

2. Knowledge Graph Fine-Tuning
   • Hierarchical clustering constraint
   • Semantic anchoring
   • Link prediction objective



Datasets
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• Datasets

FB15K-237: 
• A subset of Freebase, a large collaborative knowledge 

base focusing on common knowledge.

YAGO3-10: 

• A subset of YAGO, a large knowledge base derived from 
multiple sources including Wikipedia, WordNet, and 

GeoNames.

PrimeKG:

• A biomedical KG integrates 20 biomedical resources, 
detailing 17,080 diseases through 4,050,249 

relationships. In this study, we extract a subset of 
PrimeKG, which contains 106,000 triples.

• Metrics

Mean Rank (MR): 
• Measures the average rank of true entities. 

Mean Reciprocal Rank (MRR):
• Averages the reciprocal ranks of true entities.

Hits@N:

• Measures the proportion of true entities in the top 
N predictions.



Main Results
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(1) KG-FIT consistently and significantly 
outperforms state-of-the-art PLM-based 

and structure-based methods across all 
datasets and metrics.

(2) With LLM-guided hierarchy refinement, 
KG-FIT achieves huge performance gains 

compared to the base models and KG-FIT 
with seed hierarchy.

(3) KG-FIT is more effective for smaller KGs, 
e.g., more performance gains on 

PrimeKG (~ 0.1 million triples) than 
YAGO3-10 (~1 million triples).



Visualization
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Conclusion
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We introduced KG-FIT, a novel framework that enhances knowledge graph (KG) embeddings 
by integrating open-world entity knowledge from Large Language Models (LLMs). 

• KG-FIT effectively combines the knowledge from LLM and KG to preserve both global and 
local semantics, achieving state-of-the-art link prediction performance on benchmark 
datasets. 

• It shows significant improvements in accuracy compared to the base models. Notably, KG-
FIT can seamlessly integrate knowledge from any LLM, enabling it to evolve with ongoing 
advancements in language models. 

• Future work will explore using the KG-FIT embedding for precise knowledge retrieval, 
which can set a strong foundation for retrieval augmented generation (RAG) by LLMs.



Thank you!

Patrick Jiang
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