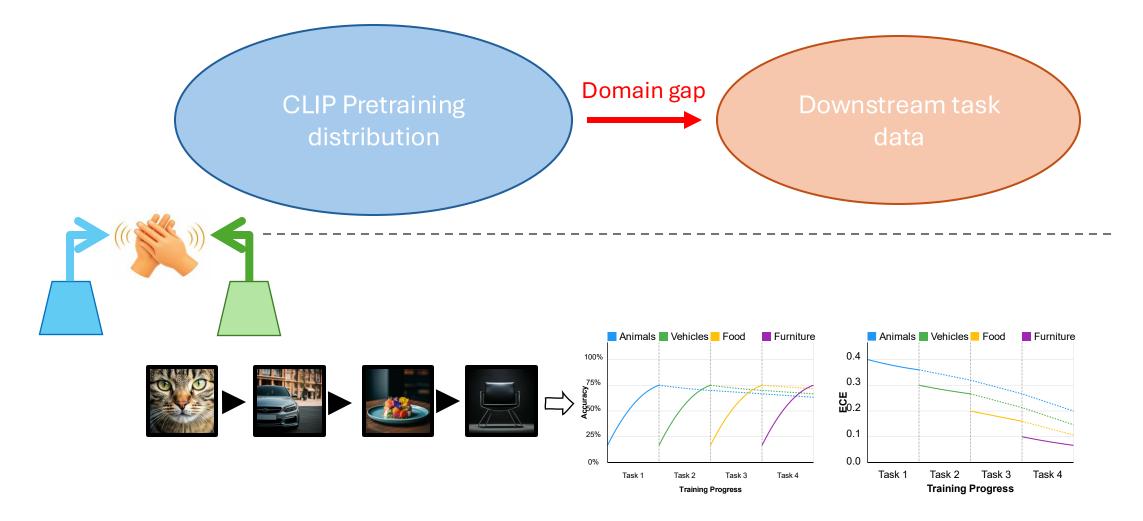


CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models

Saurav Jha, Dong Gong, Lina Yao

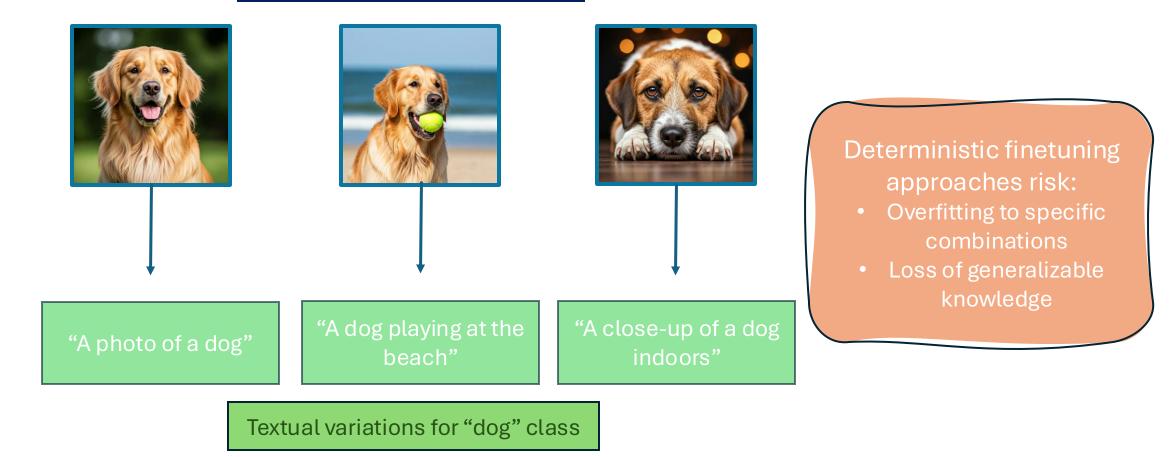
Code: https://github.com/srvCodes/clap4clip

(Continual) Finetuning motivation



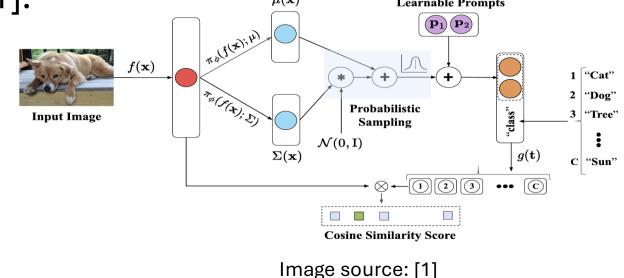
Existing finetuning approaches are deterministic

Visual variations for "dog" class



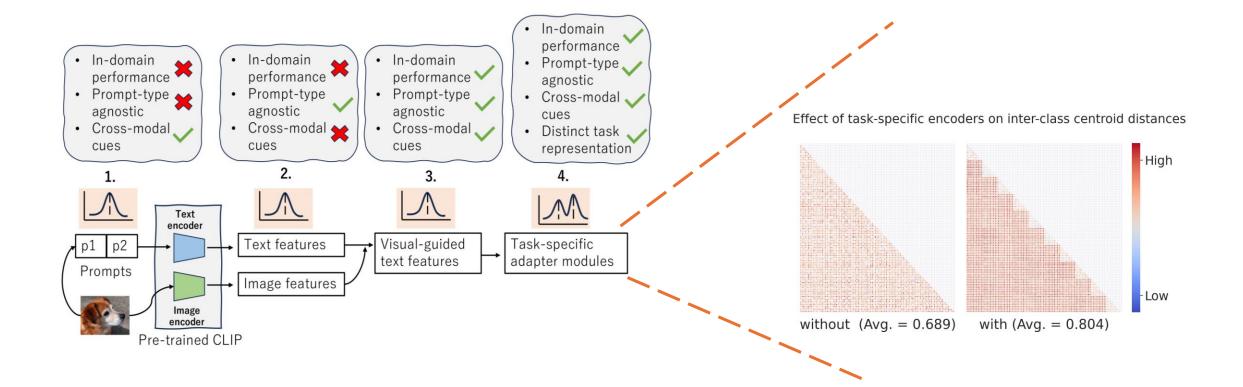
Probabilistic finetuning approaches

- Model the distribution of image/text cues
- Sampling from such distribution can help capture various imagetext interactions, and hence generalize better
- Probabilistic finetuning approaches however sacrifice in-domain performance [1]: $\mu(\mathbf{x})$ Learnable Prompts

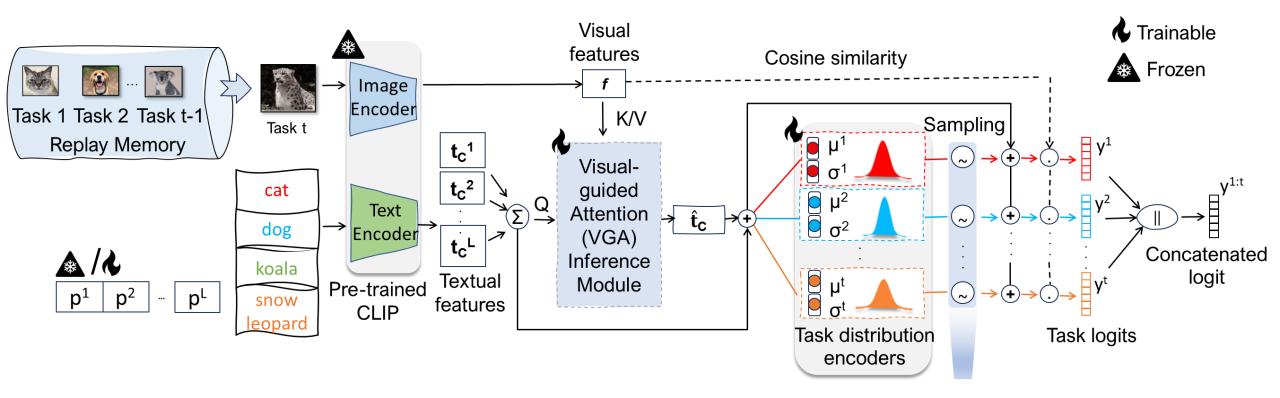


[1] Derakhshani et al. "Variational Prompt Tuning Improves Generalization of Vision-Language Models"

Candidate spaces for probabilistic modeling



CLAP: Variational modelling over VGA outputs



Why model visual-guided text features?

- We analyze the effect of CL on the spatial geometry of cross-modal features
- The rotation angle arccos<t, 1>, where t = test features of 1st test task after step t

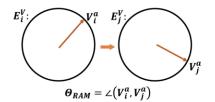
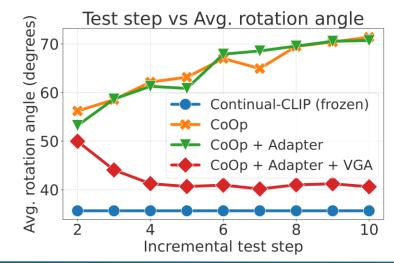


Image source: [1]

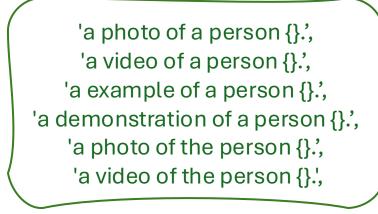
• Introducing a Visual-guided Adapter (VGA) module for alignment:



[1] Ni et al. "Continual Vision-Language Representation Learning with Off-diagonal Information"

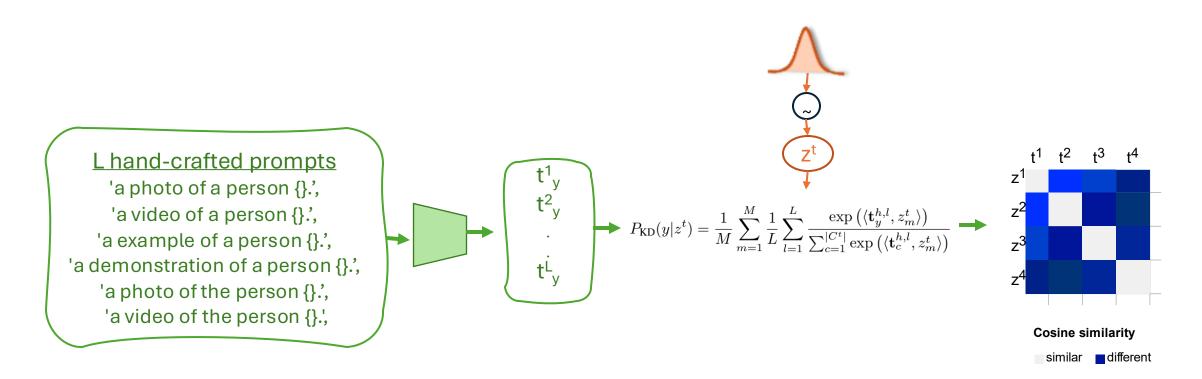
Can we do better against forgetting?

- We know that CLIP comes with rich pre-trained knowledge
- This helps in swift construction of task-specific hand-crafted prompts that perform well in general
- Can we leverage such hand-crafted prompts to counter forgetting?



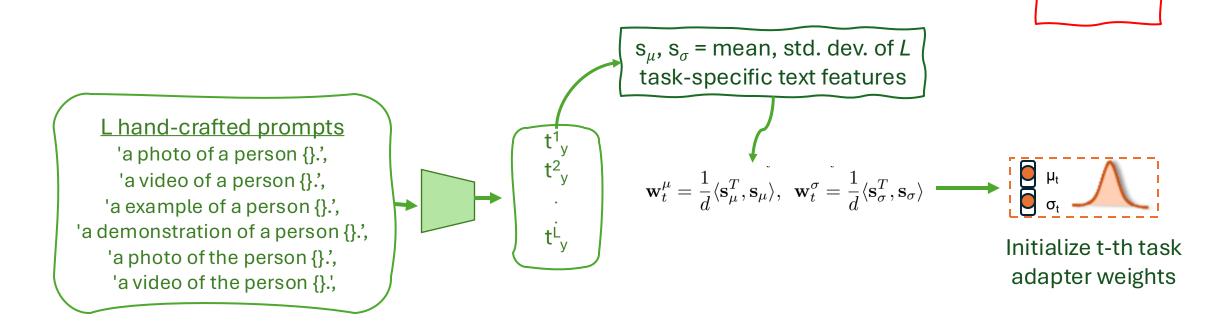
Pretrained language knowledge for countering forgetting

1. Past-task distribution regularization



Pretrained language knowledge for countering forgetting

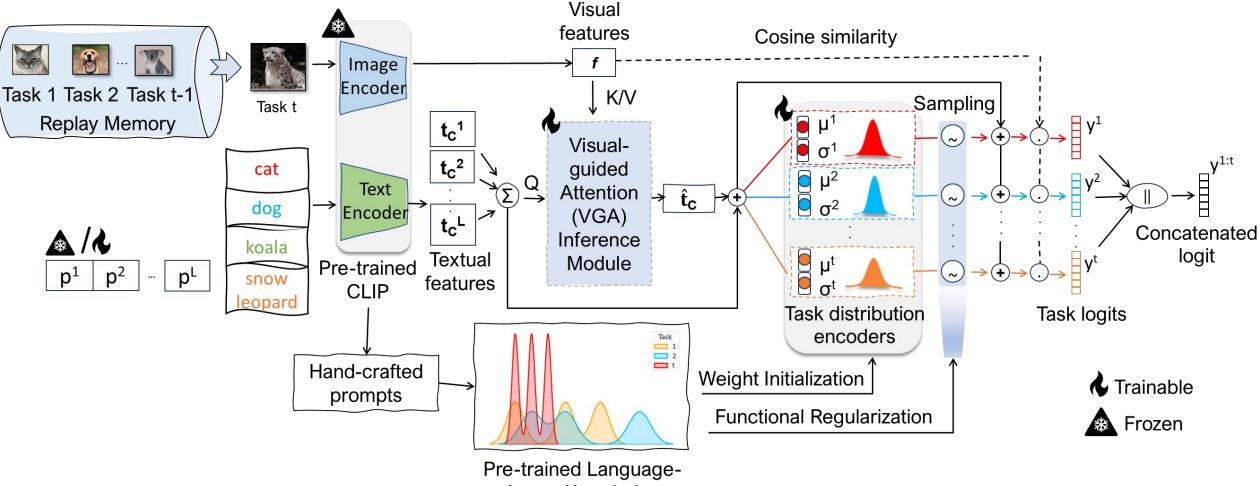
2. Weight initialization for mitigating stability gap [1]



d x d

w t = \mathbb{R}

CLAP with pre-trained knowledge



Aware Knowledge

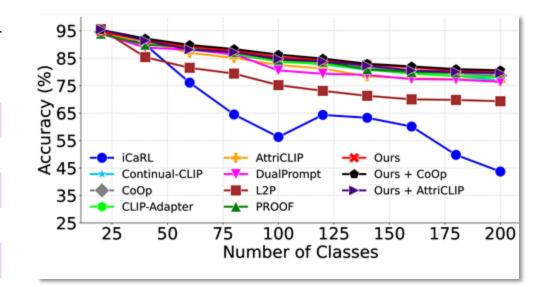
Evaluation

- On five class-incremental dataset setups
- We incorporate CLAP with:
 - 1. Hand-crafted prompts (Continual-CLIP)
 - 2. Task-conditioned learnable prompts (CoOp)
 - 3. Instance-conditioned learnable prompts (AttriCLIP)
 - 4. Multimodal prompts (MaPLe)

Average incremental accuracy

• T = number of tasks, C/T = number of classes per task

Model	CIFAR-100 (10 T, 10 C/T)	lmageNet-R (10 T, 20 C/T)	V-TAB (5 T, 10 C/T)
CODA-P	85.19	82.06	87.5
Continual-CLIP	78.65	84.43	68.5
+ Ours	86.13	85.77	91.37
СоОр	81.17	84.7	87.06
+ Ours	85.71	85.32	92.51
MaPLe	82.74	85.28	83.91
+ Ours	86.06	86.25	90.97
AttriCLIP	79.31	83.09	71.84
+ Ours	78.06	86.35	74.84



Further robust evaluations

• Calibration (Expected Calibration Error)

Model	ImageNet-R	V-TAB
СоОр	0.191	0.191
+ Ours	0.207	0.136

• Forgetting (Backward transfer)

Model	ImageNet-R	V-TAB
СоОр	-0.12	-0.007
+ Ours	-0.112	0.011

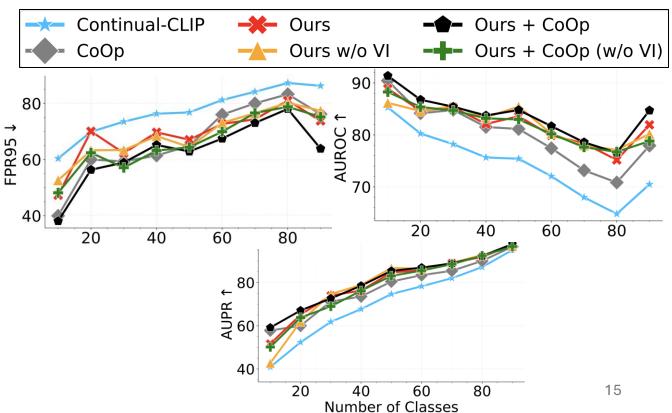
• Generalization (Forward transfer)

Model	ImageNet-R	V-TAB
СоОр	60.93	69.38
+ Ours	63.44	74.1

Perks of probabilistic modelling

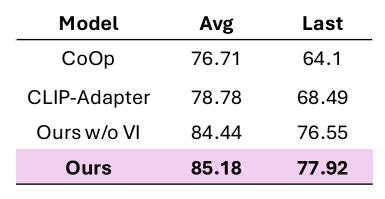
- 1. Post-hoc Novel Data Detection (PhNDD)
 - At step t, treat all seen (i <= t) test data as in-domain
 - Treat all the future tasks data as novel
 - Energy score of prediction quantifies the model's confidence score

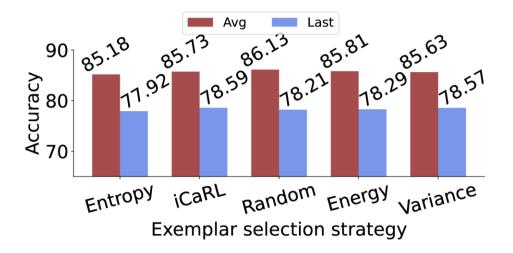
Model	AUROC ↑	AUPR ↑	FPR95↓
Continual- CLIP	74.46	71.11	77.33
Ours w/o VI	82.29	78.88	68.83
+ CLAP (Ours)	82.21	79.54	68.72
СоОр	80.15	77.62	66.8
+ CLAP w/o VI	81.98	78.88	66.21
+ CLAP	83.73	80.97	62.68



Perks of probabilistic modelling

- 2. Uncertainty-based exemplar selection
 - Select replay exemplars based on the entropy of CLAP's predictions
 - Deterministic methods are known to perform subpar at this [1]





Conclusion

- We propose CLAP4CLIP, a probabilistic continual finetuning framework for the pre-trained CLIP model
- CLAP supports a diverse range of prompts: hand-crafted, taskconditioned, instance-conditioned, and multi-modal
- For these prompt types, CLAP can help enhance the in-domain performances as well as out-of-domain generalization
- We show out-of-the-box utilities of CLAP's probabilistic nature for post-hoc novel data detection and uncertainty-based exemplar selection