

Model based inference of synaptic plasticity rules

Yash Mehta, Danial Tyulmankov, Adithya Rajagopalan, Glenn Turner James Fitzgerald*, Jan Funke*

Standard forms of synaptic plasticity

$$\Delta w = g_{\theta}(x, y, w, r) = ?$$

$$g_{\theta}^{\text{Taylor}} = \sum_{\alpha,\beta,\gamma=0}^{2} \theta_{\alpha,\beta,\gamma} x_{i}^{\alpha} y_{j}^{\beta} w_{ij}^{\gamma}.$$

Note,

Hebbian.....
$$xy$$
 $\theta_{110} = 1$, $\theta_{rest} = 0$ Anti-Hebbian $-xy$ $\theta_{110} = -1$, $\theta_{rest} = 0$ Oja's $xy - y^2w$ $\theta_{110} = 1$, $\theta_{021} = -1$, $\theta_{rest} = 0$

We can't directly measure the changes in synaptic weights during learning!

Obtainable measurements:

A. Neural activity

Model (plasticity from neural activity)

$$\Delta w_{ij}^{}=g_{ heta}^{}(x_{j}^{},y_{i}^{},w_{ij}^{},r_{j}^{})$$

Assumptions

- 1. Single layer of feed forward neural network with plasticity
- 2. All weights evolve according to same plasticity rule, g_{θ}
- 3. Plasticity (g_{θ}) depends only on state (x, y, w, r) of the current time step

Measured neural activity

Method overview (neural activity)

NEURAL INFORMATION PROCESSING SYSTEMS

Method validation: simulated data

RAL INFORMATION

Generate a trajectory with a known plasticity rule, then try to infer it.

Model (plasticity from behavior)

$$\Delta w_{ij}^{} = g_{ heta}^{}(x_{j}^{},y_{i}^{},w_{ij}^{},r_{j}^{})$$

Assumptions

p(accept)

- Behavior: accept, reject decisions. Given by network output
- 2. Plasticity happens in the first layer, last layer is fixed (averages neural activity)

Method overview (behavior)

Fly experimental setup

NEURAL INFORMATION PROCESSING SYSTEMS

Yash Mehta, Cognitive Science PhD student, Johns Hopkins

Paper Website

GitHub Repo

