

Léopold Maillard1,2**, Nicolas Sereyjol-Garros, Tom Durand**²**, Maks Ovsjanikov**¹

¹LIX, École Polytechnique, IP Paris ²Dassault Systèmes

NeurIPS 2024

Introduction

Task

Controllable **3D Indoor Scene Synthesis** – generating realistic layouts of semantic 3D objects in a bounded environment.

Introduction

Challenges

- Inherent complexity of object **interactions**.
- Requirement to fulfill **spatial**, **ergonomic** and **functional** constraints.
- Limited amount of **available data**.

Background

Existing methods synthesize rooms **autoregressively** [1]

• Which is known to easily fall into local minima

Or by using off-the-shelf **diffusion models** that predicts all the object attributes, both spatial and semantic, within a single framework [2]

• Which lacks of data-efficiency and 3D reasoning considerations.

[1] Paschalidou et al. *ATISS: Autoregressive Transformers for Indoor Scene Synthesis*, in NeurIPS 2021 [2] Tang et al. *DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis*, in CVPR 2024

Typical Failure Cases

Autoregressive [1]

Off-the-shelf Diffusion [2]

Introduction

Motivation

In contrast, we propose a diffusion-based method that focus solely on accurately establishing the critical **spatial features** (position, rotation and dimension) of objects, represented as **3D bounding boxes**, from a **floor plan** and a **list of categories.**

3D Scene Representation

A 3D Scene S is defined by a floor plan F and a set of N objects $\mathcal{O} = \{o_1, ..., o_N\}$, each being represented by a category c_i and bounding box **spatial** features $x_i = (p_i, r_i, d_i)$.

3D Scene Representation

A 3D Scene S is defined by a floor plan $\mathcal F$ and a set of N objects $\mathcal{O} = \{o_1, ..., o_N\}$, each being represented by a category c_i and bounding box **spatial** features $x_i = (p_i, r_i, d_i)$.

Learning 3D Layouts from Room Bounds

We use a score-based approach to yield a **conditional generative model** that outputs 3D object bounding boxes from their semantic categories and input floor plan.

A noise-conditioned denoiser $D_{\theta}(x_{\sigma}; \mathcal{F}, c, \sigma)$ maps **noisy** spatial **features** $x_{\sigma} = x + \sigma \epsilon$ to their *clean* counterparts x.

Scene Input Space

Modeling the Unconditional Density

During training, input object categories are randomly **dropped** to model both the **class-conditional** and **unconditional** 3D layout distributions.

 $-\circlearrowright\rightarrow$ Conditioning Dropout

Modeling the Unconditional Density

During training, input object categories are randomly **dropped** to model both the **class-conditional** and **unconditional** 3D layout distributions.

 $-\circlearrowright\rightarrow$ Conditioning Dropout

Denoising Network Architecture

The floor plan $\mathcal F$, noise level σ and corresponding perturbed objects \mathcal{O}_{σ} are processed by respective **encoders** to form an **unordered set** of embeddings…

Scene Input Space Trainable Module \Box Concatenation \Diamond Positional Encoding

… fed as input to a noiseconditioned **transformer** encoder

3D Spatial Objective

We propose a novel Chamfer formulation that does not penalize **permutation** of 3D object bounding boxes sharing **the same semantic category**.

$$
\mathcal{L}_{CD}(\hat{\mathcal{O}}, \mathcal{O}) = \frac{1}{2N} \left(\sum_{\hat{\mathcal{O}} \in \hat{\mathcal{O}}} \min_{o \in \mathcal{O}} l(\hat{\mathcal{O}}, o) + \sum_{o \in \mathcal{O}} \min_{\hat{\mathcal{O}} \in \hat{\mathcal{O}}} l(\hat{\mathcal{O}}, o) \right)
$$

where
$$
l(\hat{o}, o) = ||\hat{x} - x||_2^2 + \kappa(1 - \delta_c(\hat{o}, o))
$$
 and $\kappa \gg 1$

Semantic Penalty

Ablations

*For SCA, values closer to 50% are better.

**OBA is the cumulated out-of-bounds objects area computed across the test subset, in m^2 .

Motivation

Input set of object categories can be *provided* by external sources such as a LLM [3]. **SSE** is a method to select the sets that lead to the most realistic scenes.

[3] Feng et al. *LayoutGPT: Compositional Visual Planning and Generation with Large Language Models*, in NeurIPS 2023

Method

Input set of object categories can be *provided* by external sources such as a LLM [3]. **SSE** is a method to select the sets that lead to the most realistic scenes.

It consists in evaluating < conditioning categories *candidates*, where each candidate is associated to a 3D layout sampled from the **class-conditional** density:

candidates =
$$
\left\{ \left(c_j, x_j \sim p_\theta \left(x | \mathcal{F}, c_j \right) \right) \right\}_{j=1}^C
$$

The optimal conditioning candidate c^* is derived from a density estimate of its corresponding 3D spatial layout x^* provided by the **unconditional** model:

$$
x^* = \arg\min_{x_i} \mathbb{E}_{\epsilon,\sigma}[\mathcal{L}_{CD}\lbrace D_{\theta}(x_i + \sigma \epsilon; \mathcal{F}, \emptyset, \sigma), x_i \rbrace]
$$

[3] Feng et al. *LayoutGPT: Compositional Visual Planning and Generation with Large Language Models*, in NeurIPS 2023

Algorithm

Similar to Diffusion Classifiers [4], we compute a **Monte Carlo estimate** of each *candidate* expectation using T_{SSE} fixed (σ, ϵ) pairs.

Algorithm 1 Self Score Evaluation

Require: a diffusion prior D_{θ} trained with conditioning dropout and by optimizing \mathcal{L}_{CD} **Input:** conditioning candidates $\{c_j\}_{j=1}^C$, number of score evaluation trials T_{sse} 1: **sample** $x_j \sim p_\theta(x|\mathcal{F}, c_j)$ for each candidate c_j using iterative sampling 2: initialize scores $[c_j] = \text{list}($ for each c_j 3: for trial $t = 1, \ldots, T_{\text{sse}}$ do sample $\sigma \sim \mathcal{N}(0, \sigma_s)$; $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $4:$ $5:$ for candidate c_k , sample x_k do $\texttt{scores}[c_k].\texttt{append}(\mathcal{L}_{CD}[D_\theta(\boldsymbol{x}_k + \sigma \boldsymbol{\epsilon}_ { \boldsymbol{\cdot} }; \mathcal{F}, \emptyset, \sigma), \boldsymbol{x}_k])$ $6:$ end for $7:$ 8: end for 9: **return** arg \min_{c_i} mean (scores[c_j])

Application Results

Candidate sets of object categories can be automatically generated by a LLM, and using SSE, further **selected** to generate a plausible 3D layout, or automatically **discarded**.

Top-down view of scenes generated by DeBaRA from LLM-generated candidates and their associated SSE scores.

Other Application Scenarios

A trained DeBaRA model can be leveraged to perform several downstream applications, by tweaking the initial sampling noise level σ_{max} and / or performing object or attribute-level **layout inpainting**.

Scene Completion

Other Application Scenarios

A trained DeBaRA model can be leveraged to perform several downstream applications, by tweaking the initial sampling noise level σ_{max} and / or performing object or attribute-level layout inpainting.

Scene Re-Arrangement [5]

[5] Wei et al. *LEGO-Net: Learning Regular Rearrangements of Objects in Rooms*, in CVPR 2023

Experimental Evaluations

Our quantitative experimental evaluations shows that DeBaRA achieves **state-of-the-art** performance in a range of scenarios including 3D Layout Generation, Scene Synthesis, and Re-arrangement.

Experimental Evaluations

Our quantitative experimental evaluations shows that DeBaRA achieves **state-of-the-art** performance in a range of scenarios including 3D Layout Generation, Scene Synthesis, and Re-arrangement.

3D Layout Generation

Quantitative evaluation results on the 3D-FRONT [6] dataset.

[6] Fu et al. *3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics*, in ICCV 2021

Sampling

DeBaRA⁺

Bightharror DDPM [7] sampling with

2nd order **EDM** [8] sampling

‡**SSE** is implemented with 100 denoising trials.

[7] Ho et al. *Denoising Diffusion Probabilistic Models*, in NeurIPS 2020

[8] Karras et al. *Elucidating the Design Space of Diffusion-Based Generative Models*, in NeurIPS 2022

Contributions Summary

DeBaRA

A **lightweight score-based model** trained to learn the class-conditional and unconditional densities of 3D layouts in bounded indoor scenes, using a **novel 3D spatial Chamfer objective**.

Self Score Evaluation (SSE)

A **procedure to select the best conditioning inputs** provided by external sources, such as LLMs, using **density estimates** provided by the pretrained generative model.

Controllable Sampling Method

A single model trained following our method can perform **multiple downstream tasks** such as scene completion or re-arrangement, in **real-time** (<1s).

DeBarace Communisher Communisher Communishers Arrangement Generation

Léopold Maillard1,2**, Nicolas Sereyjol-Garros, Tom Durand**²**, Maks Ovsjanikov**¹

 1 LIX, École Polytechnique, IP Paris 2 Dassault Systèmes

