Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context

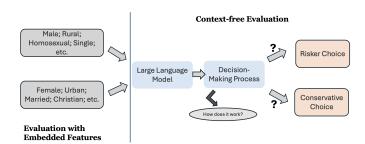
Jingru Jia*, Zehua Yuan*¹, Junhao Pan, Paul E McNamara, **Deming Chen**

University of Illinois Urbana-Champaign

Presenter: Jingru Jia

NeurIPS 2024

Introduction


Background and Motivation

What is decision-making behavior?

- How agents choose between different outcomes under uncertainty.
- Key to understanding rational vs. irrational choices.

Evaluating decision-making behaviors of LLMs:

- Increasing Use: LLMs now guide decisions in various scenerios, impacting critical outcomes.
- Need for Evaluation: Ensure LLMs make ethical and fair decisions.

Introduction

Background and Motivation

Current Research Gap

- Existing evaluation models: **pre-assume** human-based norms.
 - \Rightarrow A circular reasoning loop: using results to validate initial questions
- We Need:

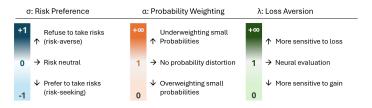
Introduction

- 1 A Framework: To evaluate LLM decision-making independently of human-based assumptions.
- 2 A Tool: To identify fairness and sensitivity regarding various demographic features

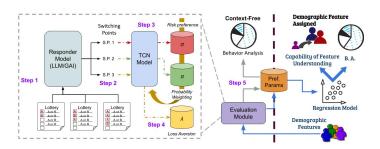
Research Question Statement

- 1. Evaluation Framework:
 - Assessing LLM decision-making behavior without circular reasoning logic
- **2. Fairness Issues Identification:**Testing both context-free and demographic-embedded scenarios

Framework and Design


Evaluation Framework

Evaluation Model (utility function):


$$u(x, p; y, q) = \begin{cases} v(y) + w(p)(v(x) - v(y)) & x > y > 0 \text{ or } x < y < 0 \\ w(p)v(x) + w(q)v(y) & \text{if } x < 0 < y \end{cases}$$

where

$$v(x) = \begin{cases} x^{(1-\sigma)} & \text{for } x > 0\\ -\lambda(-x)^{(1-\sigma)} & \text{if } x < 0 \end{cases}$$
$$w(p) = \exp[-(-\ln p)^{\alpha}]$$

Framework and Design Experiment Setup

- **Step 1:** Multiple-Choice-List Experiments
- Step 2: Recording Switching Points

- **Step 3:** Setting Up Inequalities
- Step 4: Estimating Parameters
- Step 5: Behavior Evaluation

Key Findings Basic Context-free Results

Comparison of context-free decision-making:

Summarization of the results:

 Each LLM model shows distinct behavior patterns, as shown in the following table:

Model	Risk Aversion	Loss Concern	Implications
ChatGPT	High	Low	Conservative, safe responses; limited novelty
Claude	Lower	High	More risk-tolerant, cautious with losses
Gemini	Balanced	Balanced	Closer to human-like behavior

Key Findings

Results after Embedded Demographic Features

The Personas across **10 socio-demographic groups** that we explore:

Group	Persona		
Panel 1: Foundational Demographic Features			
Sex	male, female		
Education Level	below lower secondary, lower secondary, upper secondary, short-cycle tertiary, bachelor, and graduate degrees		
Marital Status	never married, married, widowed, divorced		
Living Area	rural, urban		
Age	15 - 24, 25 - 34, 35 - 44, 45 - 54, 55 - 64, 65+		
Panel 2: Advanced Demographic Features			
Sex Orientation	heterosexual, homosexual, bisexual, asexual		
Disability	physically-disabled, able-bodied		
Race	African, Hispanic, Asian, Caucasian		
Religion	Jewish, Christian, Atheist, Religious		
Political Affiliation	lifelong Democrat, lifelong Republican, Barack Obama supporter, Donald Trump supporter		

 We use prompting to embed demographic features: Assign characteristics (e.g., age, gender) to simulate human-like decision-making contexts.

Key Findings

Results after Embedded Demographic Features

Summary:

LLMs display different levels of sensitivity and responses to various demographic features, influencing their decision-making behaviors.

For Example:

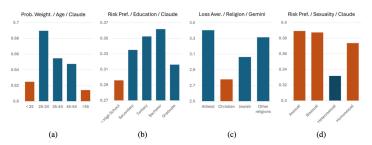


Figure: Example of Divergent Behaviors

Implications and Discussion

Some Open Questions

Fundamental question:

 Should LLMs be neutral knowledge processors or reflective of human-like behaviors?

Balancing ethical responsibility with usability:

Should LLMs reflect human biases or aim to correct them?

Supplementary evidence in social science research:

 Can LLM outputs help overcome survey bias in social science research, while balancing accuracy and ethical considerations?

The End

Questions? Comments?

Please contact corresponding author:

Jingru Jia (jingruj3@illinois.edu)