

Reranking Laws for Language Generation: A Communication-Theoretic Perspective

NeurIPS 2024 (spotlight)

António Farinhas Haau-Sing Li André Martins

Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon Ubiquitous Knowledge Processing Lab, TU Darmstadt Instituto de Telecomunicações, Instituto Superior Técnico & Unbabel, Lisbon

LLMs are great, but...

LLMs show remarkable performance across many tasks in natural language processing, computer vision, speech recognition, ...

LLMs are great, but...

LLMs show remarkable performance across many tasks in natural language processing, computer vision, speech recognition, ...

models generate critical mistakes/hallucinations instances of hallucinations and other critical errors occasionally arise

LLMs are great, but...

in natural language processing, computer vision, speech recognition, ...

models generate critical mistakes/hallucinations instances of hallucinations and other critical errors occasionally arise

unreliable predictions

no clear indication of when and how badly models might fail

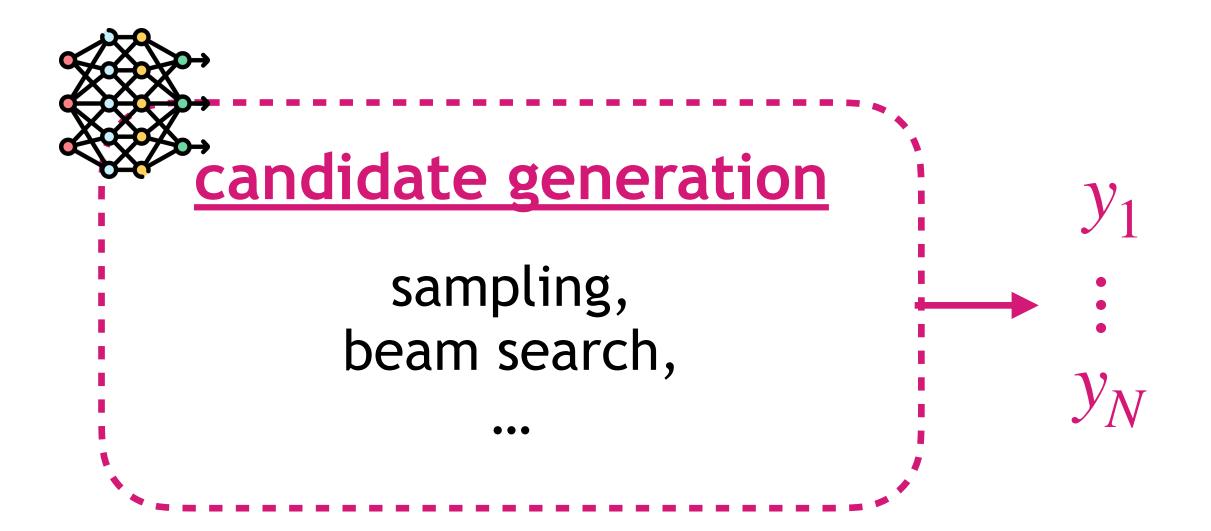
LLMs show remarkable performance across many tasks

the most common mitigation strategy is to *steer* the LLM with the aid of a reward model or directly from human preferences

adding redundancy to improve quality

a simple decoding-time strategy:

(1) an LLM generates multiple hypotheses

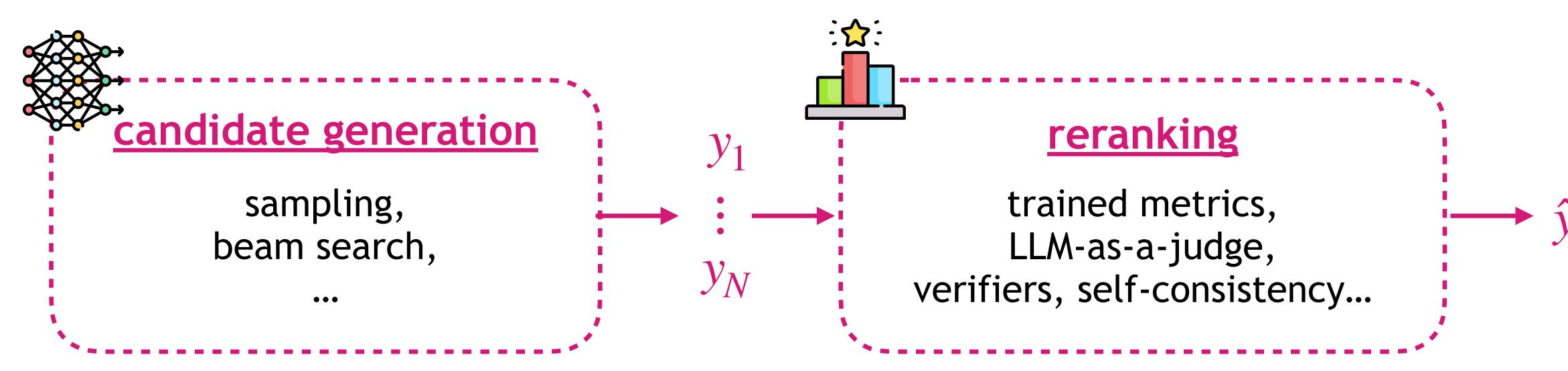


adding redundancy to improve quality

a simple decoding-time strategy:

(1) an LLM generates multiple hypotheses

(2) a reranker selects the most appropriate one



adding redundancy to improve quality

a simple decoding-time strategy:

(1) an LLM generates multiple hypotheses (2) a reranker selects the most appropriate one

redundancy adding redundancy as an intermediate step increases

the chances of returning an acceptable answer

reranking laws generation ommunication-theoretic perspe ctive

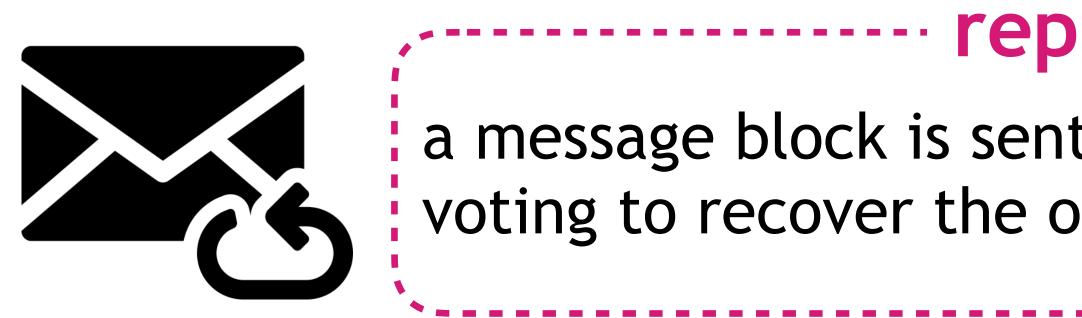
... also important in communication theory

adding redundancy to decrease the error rate in noisy channels is a cornerstone of communication theory

MacKay, 2002; Cover and Thomas, 2012; Hamming, 1950; Reed and Solomon, 1960; Gallager, 1962; Berrou et al., 1993

... also important in communication theory

adding redundancy to decrease the error rate in noisy channels is a cornerstone of communication theory



the same idea underlies more sophisticated error-correcting codes

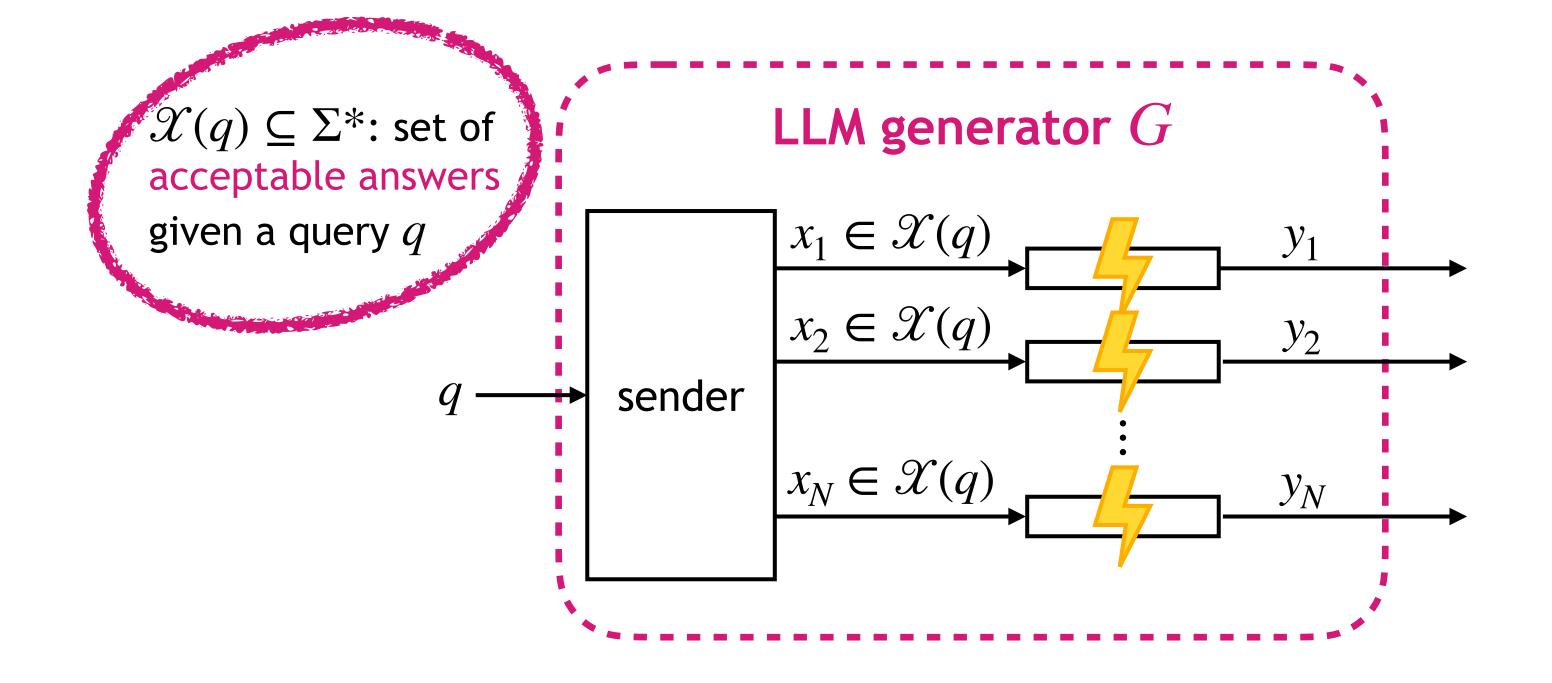
MacKay, 2002; Cover and Thomas, 2012; Hamming, 1950; Reed and Solomon, 1960; Gallager, 1962; Berrou et al., 1993

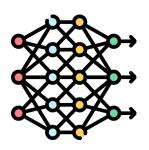
--- repetition codes ------

a message block is sent multiple times, the decoder uses majority voting to recover the original message with high probability

reranking laws for lang ective

we draw a parallel between these two worlds



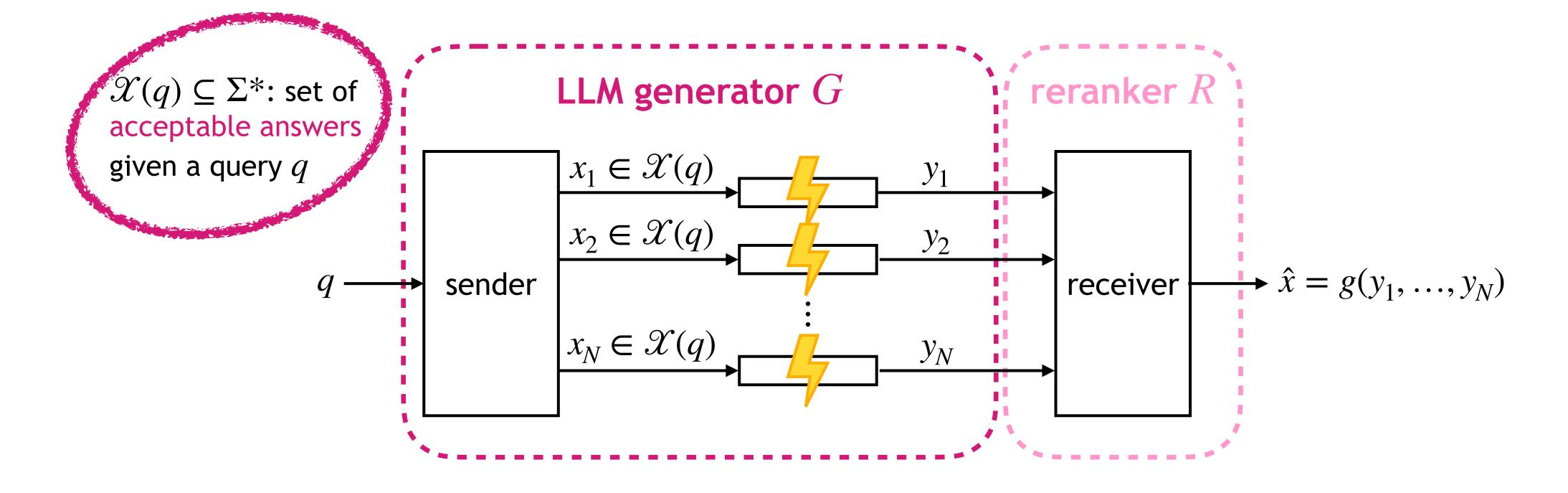


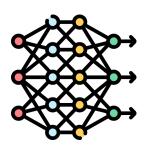
the sender transmits N message descriptions in parallel through noisy channels, leading to Npotentially corrupted hypotheses

reranking laws language generation: communication-theoretic perspe

ctive

we draw a parallel between these two worlds





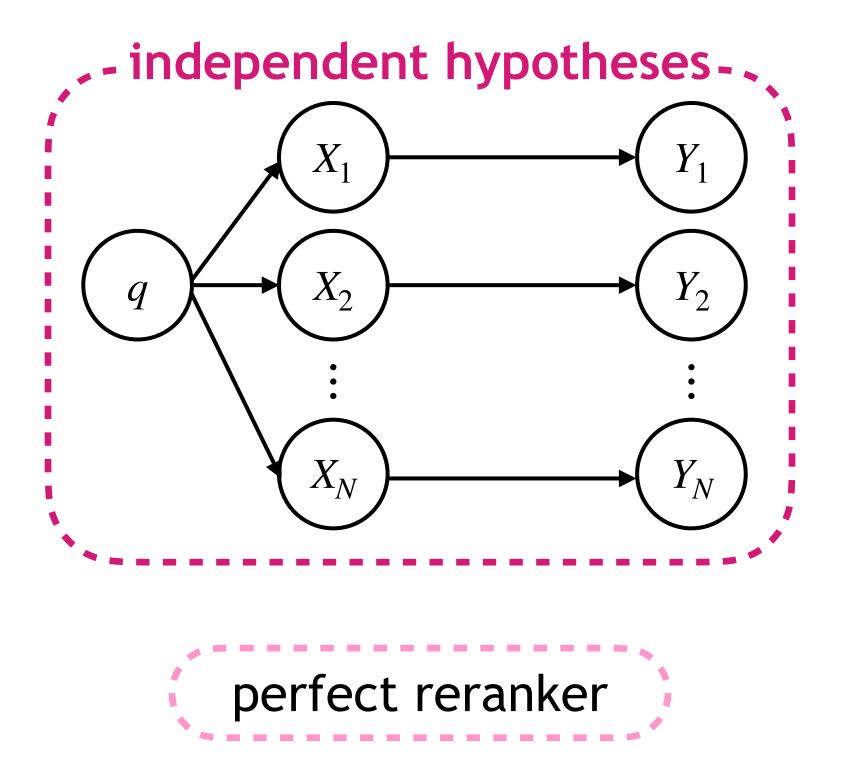
the sender transmits N message descriptions in parallel through noisy channels, leading to Npotentially corrupted hypotheses

the receiver decodes the message by ranking the descriptions and selecting the one found to be most reliable

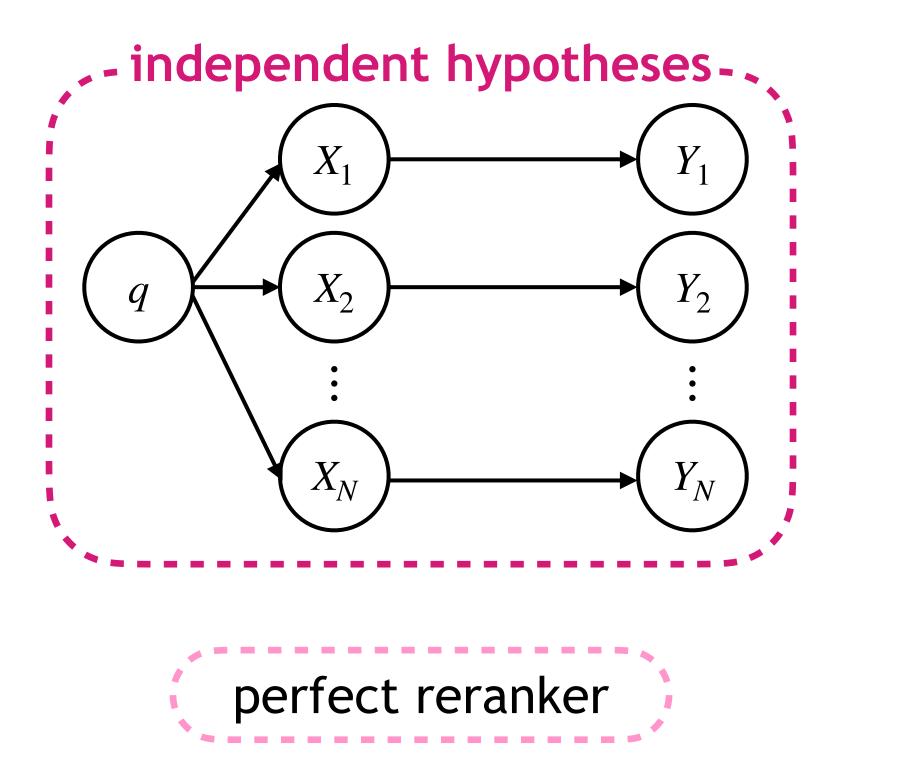
reranking generation

ctive

a simple case: independent hypotheses, perfect reranker

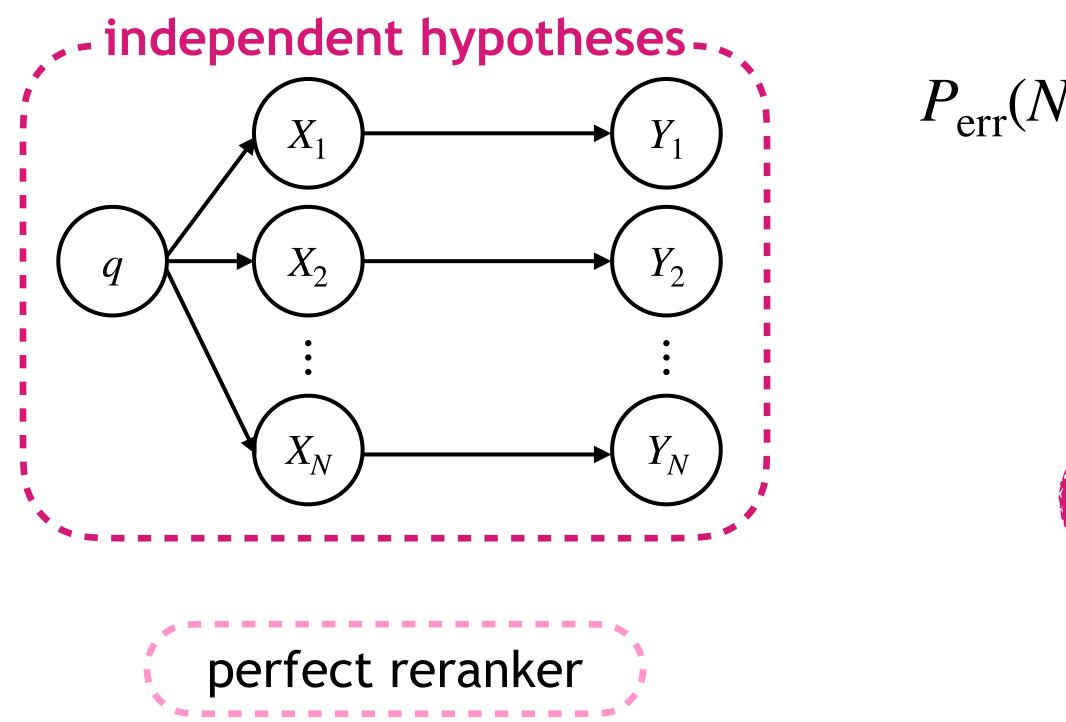


a simple case: independent hypotheses, perfect reranker



 $P_{\text{err}}(N;q) = \mathbb{P}(g(Y_{1:N}) \notin \mathcal{X}(q) \mid q)$ $= \mathbb{E}_{X_{1:N}|q} \left[\prod_{i=1}^{N} P(Y_i \notin \mathcal{X}(q) \mid X_i) \right]$ $=\epsilon$ $= \epsilon^{N}$ $\rightarrow 0$ asymptotically error-free (AEF)

a simple case: independent hypotheses, perfect reranker

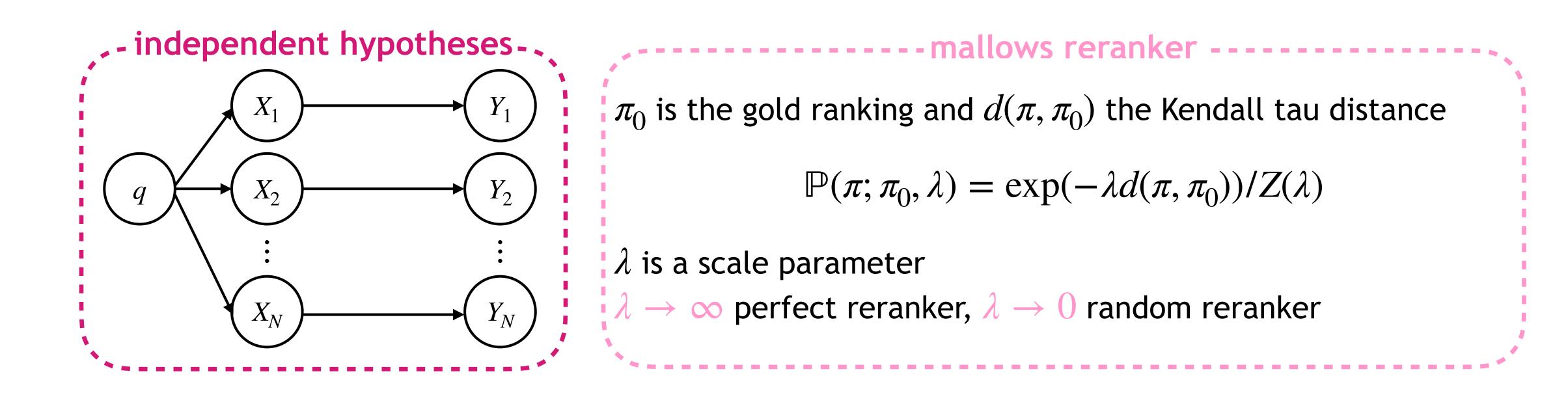


reality is more complex: rerankers are not perfect, hypotheses are not independent

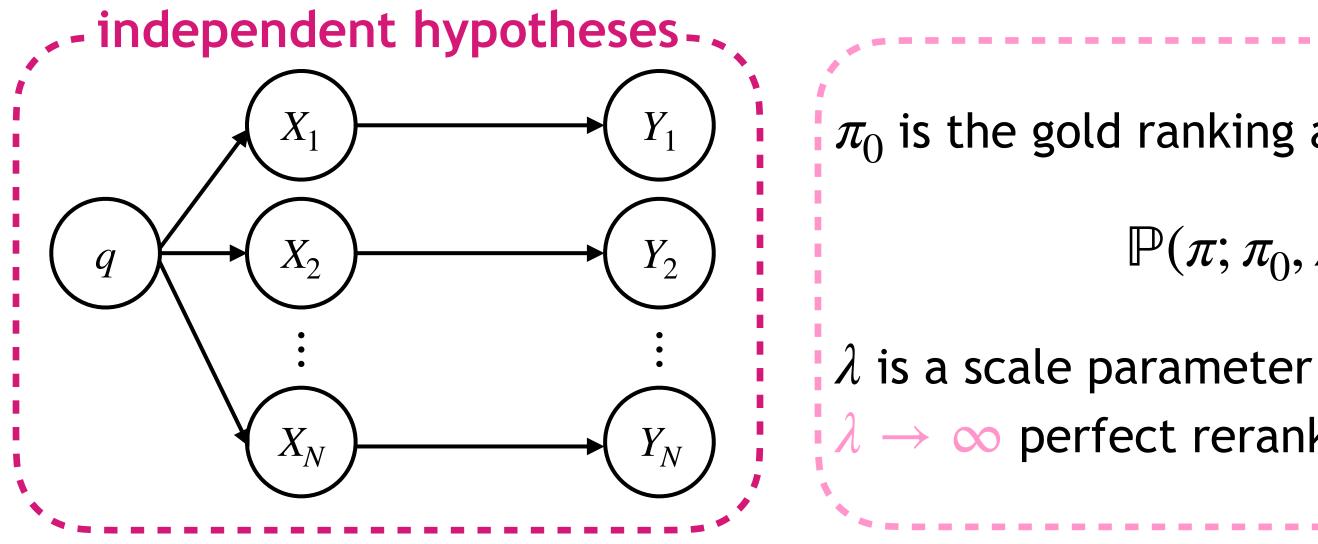
 $P_{\text{err}}(N;q) = \mathbb{P}(g(Y_{1:N}) \notin \mathcal{X}(q) \mid q)$ $= \mathbb{E}_{X_{1:N}|q} \left[\prod_{i=1}^{N} P(Y_i \notin \mathcal{X}(q) \mid X_i) \right]$ $=\epsilon$ $\rightarrow 0$ asymptotically error-free (AEF)

reranking generation: ctive

independent hypotheses, mallows reranker



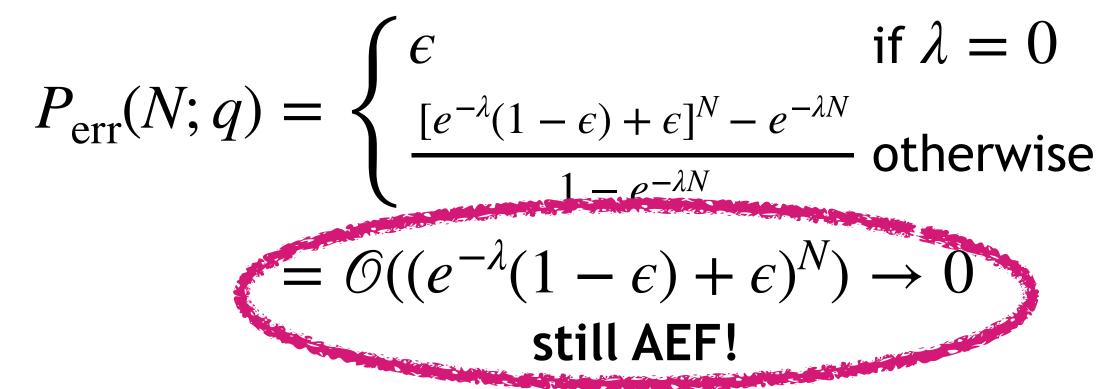
independent hypotheses, mallows reranker



-----mallows reranker ------ π_0 is the gold ranking and $d(\pi, \pi_0)$ the Kendall tau distance

$$\mathbb{P}(\pi; \pi_0, \lambda) = \exp(-\lambda d(\pi, \pi_0))/Z(\lambda)$$

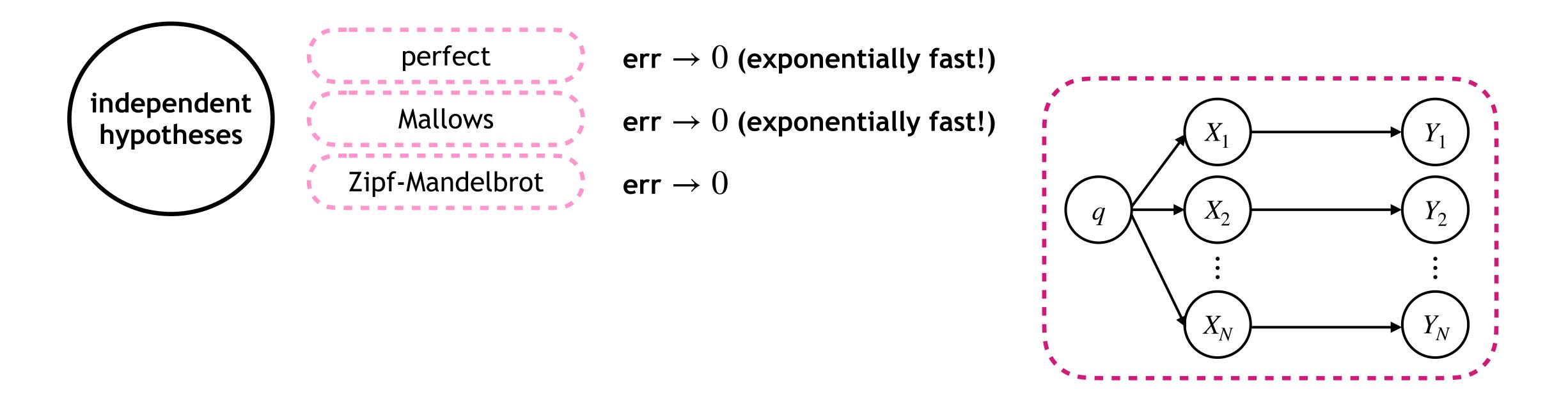
 $\lambda \to \infty$ perfect reranker, $\lambda \to 0$ random reranker



reranking tion-theoretic perspe ctive

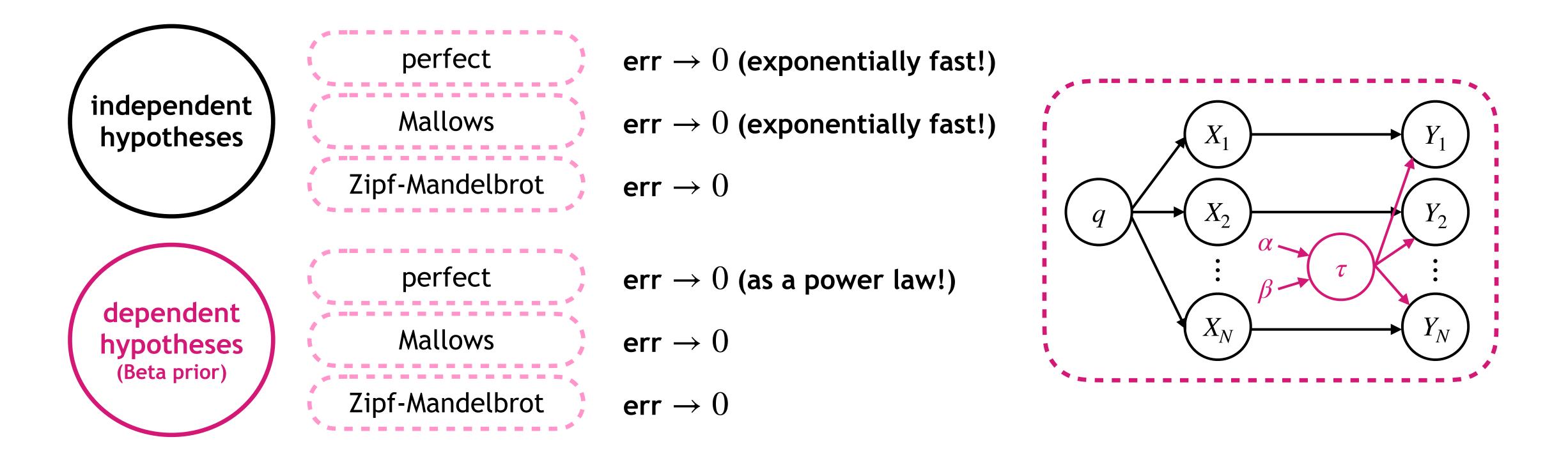
beyond perfect rerankers

we provide conditions under which this protocol is asymptotically error-free



beyond independent hypotheses

we provide conditions under which this protocol is asymptotically error-free



reranking laws generation: communication-theoretic ctive

to design error-free protocols, it is sufficient to verify if they are error-free in the simpler case where hypotheses are independent

(proposition 4)

we validate our reranking laws empirically

LLM generato

code generation DeepSeek-Coder

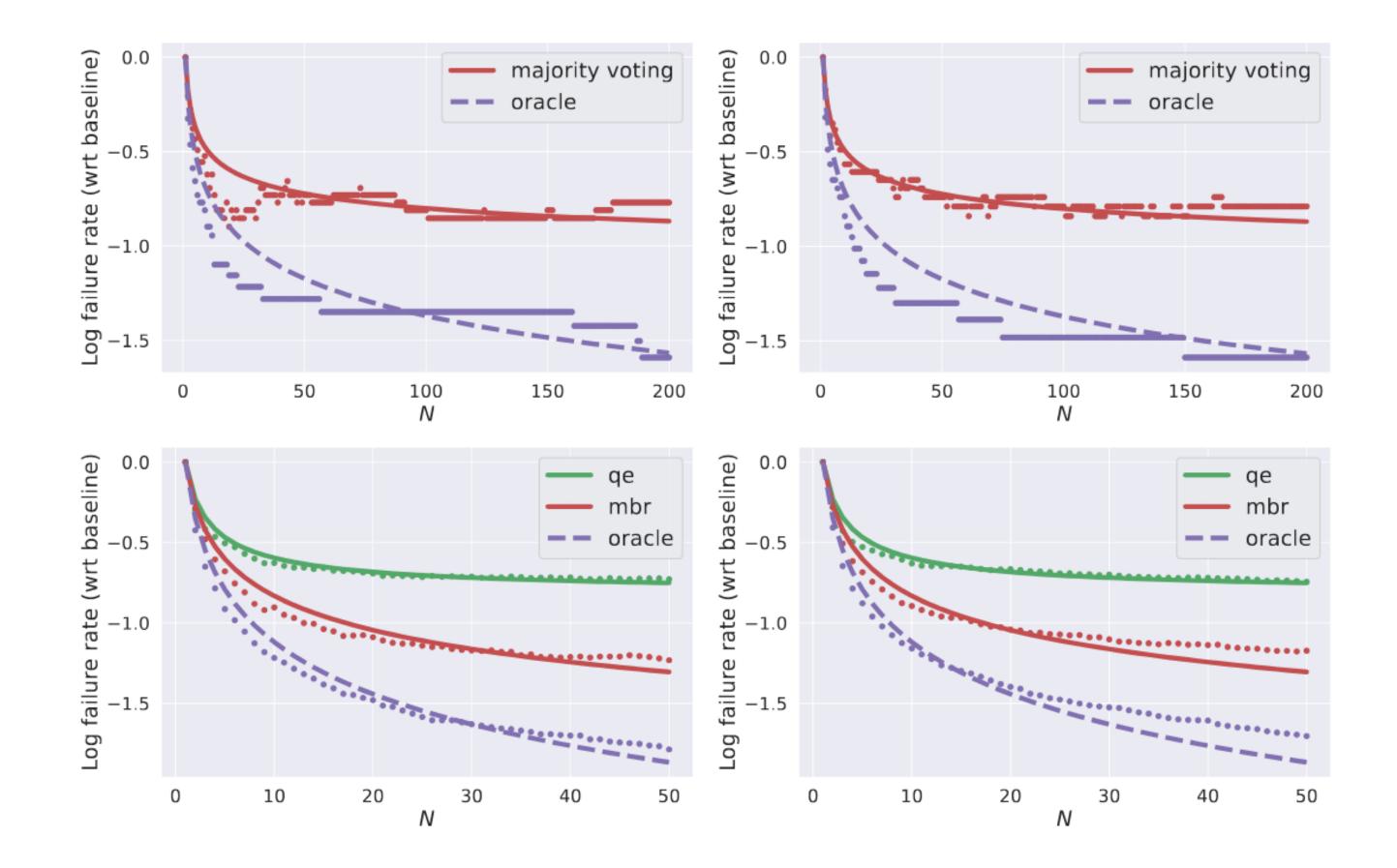
machine translation TowerInstruct 1

math/commonsense reasoning

code-davinci-0

or	reranker	datasets
r 7B	MBR-exec	MBPP
13B	MBR decoding, QE reranking	TICO-19
002	self-consistency	SVAMP, StrategyQA

code generation and machine translation



thank you

https://github.com/deep-spin/reranking-laws