Distributed Least squares in Small Space via sketching and Bias Reduction

Sachin Garg, Kevin Tan, Michał Dereziński

Problem formulation

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$.

<u>Aim</u>: Find an " ϵ -accurate" estimate to \mathbf{x}^* , but with space constraints. If

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2 \le (1+\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2,$$

then we say $\tilde{\mathbf{x}}$ is an ϵ -accurate estimate to \mathbf{x}^* .

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$.

Direct methods store **A**, requiring $\tilde{O}(nd)$ space, rendering them unsuitable for memory-constrained computing systems when $n \gg d$.

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$, and $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$.

Existing matrix sketching-based methods provide an ϵ -accurate $\tilde{\mathbf{x}}$ but at least require $\tilde{O}(d^2/\epsilon)$ space [5].

We propose an algorithm which provides an ϵ -accurate $\tilde{\mathbf{x}}$ in $\tilde{O}(d^2)$ space in distributed computing environments.

- In distributed setup, our work provides an ε-accurate x
 within 2 parallel data passes.
- Our work is based on debiasing techniques to recover nearly unbiased estimators of x* using Leverage Score Sparsified (LESS) embeddings [6].
- Our theoretical analysis relies on proving higher moment-restricted *Bai-Silverstein inequalities*, which could be of independent interest to Random Matrix Theory (RMT) community [3].

Matrix sketching for least squares

Let sketching matrix $\mathbf{S} \in \mathbb{R}^{m \times n}$, with $m \ll n$, and consider $\tilde{\mathbf{x}}$ as:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{SAx} - \mathbf{Sb}\|^2.$$

Storing **SA** requires $\tilde{O}(md)$ space, potentially much lesser than $\tilde{O}(nd)$. Choices for **S** could be anything from

- Subgaussian matrices [1].
- Randomized Hadamard transforms [2].
- Sparse Matrices, e.g. Count Sketch [4].
- Subsampling e.g. approximate Leverage score subsampling [7],

and many others.

Leverage score subsampling for least squares

The *i*th leverage score of **A** denoted by $\ell_i(\mathbf{A})$ is defined as $\ell_i(\mathbf{A}) = \mathbf{a}_i^{\top} (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{a}_i$.

Figure: Visual illustration of Leverage score subsampling

Let $\tilde{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{SAx} - \mathbf{Sb}\|^2$. Then for $m = \tilde{O}(d/\epsilon)$: $\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2 \le (1+\epsilon)\|\mathbf{Ax}^* - \mathbf{b}\|^2$.

Leverage score subsampling for least squares

The i^{th} leverage score of **A** denoted by $\ell_i(\mathbf{A})$ is defined as $\ell_i(\mathbf{A}) = \mathbf{a}_i^{\top}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{a}_i$.

Figure: Visual illustration of Leverage Score subsampling

For $m = \tilde{O}(d/\epsilon) : \|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2 \le (1+\epsilon)\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2$. <u>Space requirement:</u> $\tilde{O}(d^2/\epsilon)$. For small ϵ , this space requirement can be restrictive.

- Construct smaller sketches with a much smaller bias than the subsampling sketch.
- Leverage distributed averaging to recover an ε-accurate estimate to x*.
- Turns out that in this distributed setup we can reduce the sketch size *m* and recover a *nearly unbiased* $\tilde{\mathbf{x}}$.

Unfortunately, subsampled sketches still require $m = \tilde{O}(d/\sqrt{\epsilon})$.

We provide an algorithm that requires only $\tilde{O}(d^2)$ space.

Find ϵ -accurate $\tilde{\mathbf{x}}$ in distributed settings

Let $\tilde{\mathbf{x}} = \frac{1}{q} \sum_{i=1}^{q} \tilde{\mathbf{x}}_i$ and let $q \to \infty$. Then, $\underbrace{\|\mathbf{A}\mathbb{E}[\tilde{\mathbf{x}}] - \mathbf{b}\|^2}_{\text{Bias}} \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2 \ll \underbrace{\mathbb{E}\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2}_{\text{Variance}}.$

Find ϵ -accurate $\tilde{\mathbf{x}}$ in distributed settings

Let $\tilde{\mathbf{x}} = \frac{1}{q} \sum_{i=1}^{q} \tilde{\mathbf{x}}_i$ and let $q \to \infty$. Then, $\underbrace{\|\mathbf{A}\mathbb{E}[\tilde{\mathbf{x}}] - \mathbf{b}\|^2}_{\text{Bias}} \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2 \ll \underbrace{\mathbb{E}\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2}_{\text{Variance}}.$

Our contribution: We propose an algorithm to recover an ϵ -accurate $\tilde{\mathbf{x}}$ in $\tilde{O}(d^2)$ space in distributed settings.

NeurIPS 2024

Our algorithm: Least squares using LESS embeddings

We construct $\mathbf{S} \in \mathbb{R}^{\tilde{O}(d) \times d}$ and every row of \mathbf{S} is now formed by mixing (compressing) $\tilde{O}(1/\epsilon)$ rows from \mathbf{A} .

Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.

Our algorithm: Least squares using LESS embeddings

We construct $\mathbf{S} \in \mathbb{R}^{\tilde{O}(d) \times d}$ and every row of \mathbf{S} is now formed by mixing (compressing) $\tilde{O}(1/\epsilon)$ rows from \mathbf{A} .

Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.

Our algorithm: Least squares using LESS embeddings

We construct $\mathbf{S} \in \mathbb{R}^{\tilde{O}(d) \times d}$ and every row of \mathbf{S} is now formed by mixing (compressing) $\tilde{O}(1/\epsilon)$ rows from \mathbf{A} .

Figure: Sketching in small space via LESS embeddings

LESS: LEverage Score Sparsified.

Our results

Let
$$\tilde{\mathbf{x}} = \frac{1}{q} \sum_{i=1}^{q} \tilde{\mathbf{x}}_i$$
. Then for $q = \frac{1}{\epsilon}$ we have,
 $\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2$.

Importantly, $\mathbf{S}_i \mathbf{A}$ requires $\tilde{O}(d^2)$ space.

- We show that in streaming settings and distributed environments, an ε-accurate estimate to x* can be obtained in 2 data passes.
- We extend our results to distributed settings where data is uniformly partitioned across q machines.

Theorem (Main result (informal) from the paper)

Given streaming access to $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^{n}$, within 2 passes over (\mathbf{A}, \mathbf{b}) , in $\tilde{O}(\operatorname{nnz}(\mathbf{A}) + \epsilon^{-1}d^{2})$ time and $\tilde{O}(d^{2})$ bits of space, we can construct a randomized estimator $\tilde{\mathbf{x}}$ for the least squares solution \mathbf{x}^{*} such that:

(Bias)
$$\|\mathbf{A}\mathbb{E}[\tilde{\mathbf{x}}] - \mathbf{b}\|^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2$$
,
(Variance) $\mathbb{E}[\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|^2] \le 2 \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|^2$.

Thank you!

- Dimitris Achlioptas. "Database-friendly random projections: Johnson-Lindenstrauss with binary coins". In: <u>Journal of computer and System Sciences</u> 66.4 (2003), pp. 671–687.
- [2] Nir Ailon and Bernard Chazelle. "The fast Johnson–Lindenstrauss transform and approximate nearest neighbors". In: <u>SIAM Journal on computing</u> 39.1 (2009), pp. 302–322.
- [3] Zhidong Bai and Jack W Silverstein.
 <u>Spectral analysis of large dimensional random matrices</u>. Vol. 20. Springer, 2010.

- [4] Kenneth L Clarkson and David P Woodruff. "Low-rank approximation and regression in input sparsity time". In: <u>Journal of the ACM (JACM)</u> 63.6 (2017), pp. 1–45.
- [5] Kenneth L Clarkson and David P Woodruff. "Numerical linear algebra in the streaming model". In:
 <u>Proceedings of the forty-first annual ACM symposium on Theory</u> 2009, pp. 205–214.
- [6] Michal Derezinski et al. "Sparse sketches with small inversion bias". In: <u>Conference on Learning Theory</u>. PMLR. 2021, pp. 1467–1510.

 Shusen Wang, Alex Gittens, and Michael W Mahoney.
 "Sketched ridge regression: Optimization perspective, statistical perspective, and model averaging". In: <u>Journal of Machine Learning Research</u> 18.218 (2018), pp. 1–50.