OwMatch: Conditional Self-Labeling with Consistency for Open-world Semi-Supervised Learning

Shengjie Niu¹, Lifan Lin², Huang Jian¹, Wang Chao²

¹The Hong Kong Polytechnic University and ²Southern University of Science and Technology

November 13, 2024

Experiments

Outlines

2 Methodology

- Conditional Self-labeling
- Open-world Hierarchical Thresholding

3 Experiments

4 References

Outlines

2 Methodology

- Conditional Self-labeling
- Open-world Hierarchical Thresholding

3 Experiments

4 References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Experiments 0000

Open-world Semi-Supervised Learning (OwSSL)

- Expensive and time-consuming labeling process limits real-world deep-learning applications.
- Semi-supervised learning (SSL) reduces the dependency on labeled data by exploring the inherent structure of unlabeled data.
- Existing SSL methods typically assume a closed-world where all classes possess labeled instances.
- A common case is the presence of novel classes in the unlabeled data.
- **Objective of OwSSL**: classify seen-class samples, or discover novel-class samples and clustering them.

Challenges

- Discover novel classes and assign instances to them. (clustering task)
- Confirmation Bias: The model is biased towards seen classes because it has been exposed only to instances from seen classes.
- Synchronize the varying learning pace that result from the diverse learning style between seen and novel classes. (novel class tend to be slower than seen class)
 - The learning of seen classes base on the supervision of ground-truth labels.
 - For unseen classes, the model can only learn from the clustering objective.

Existing Works

- Pairwise-similarity-based methodologies.
 - Construct a pairwise objective on representation space.
 - Pairwise similarity is calculated and proximity in the prediction of paired instances is encouraged by Binary Cross-Entropy (BCE) loss.
 - Examples: ORCA [1], NACH [1], OpenLDN [2].
- Contrastive-based methodlogies.
 - Construct unsupervised contrastive objective (source from SimCLR [3]) for all data and supervised contrastive objective (source from SupCon [4]) for labeled data.
 - Examples: GCD [5], SimGCD [6].
- Other clustering techniques: Self-labeling-based, TRSSL [7].

Outlines

2 Methodology

- Conditional Self-labeling
- Open-world Hierarchical Thresholding

3 Experiments

4 References

・ロト・西ト・モート ヨー うへの

Experiments 0000

Flowchart of OwMatch

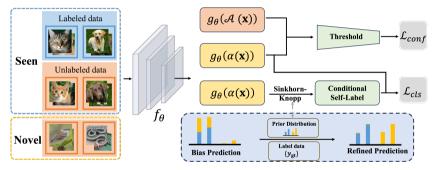


Figure 1: Overview of the OwMatch framework, which is fundamentally composed of three objectives: a) **standard supervised objective**; b) **clustering objective**, which discovers novel-class samples; c) **confidence objective**, which balances the different learning pace between seen and novel classes.

Experiments 0000

Clustering Objective

Consider the input data $\mathbf{x}^{(i)}$, denote $\mathbf{p}^{(i)}, \mathbf{q}^{(i)} \in \mathbb{R}^{K}$ as the **model prediction** and **soft self-label** for $\mathbf{x}^{(i)}$, the clustering loss for $\mathbf{x}^{(i)}$ is defined as $\mathcal{L}_{cls}(\mathbf{x}^{(i)}) := H(\mathbf{q}^{(i)}, \mathbf{p}^{(i)})$, where H refers to the Cross-Entropy.

Self-labeling to optimize **q**: Denote **P**, $\mathbf{Q} \in \mathbb{R}^{K \times N}$ as the prediction and self-label for $\{\mathbf{x}^{(i)}\}_{i=1}^{N}$. **Q** is enforced to follow a desired partition by constraining it to belong to the transportation polytope: $\mathcal{Q}_1 := \{\mathbf{Q} \in \mathbb{R}^{K \times N}_+ | \mathbf{Q} \mathbf{1}_N = N\mathcal{P}, \mathbf{Q}^T \mathbf{1}_K = \mathbf{1}_N\}$, where $\mathbf{1}_v$ is *v*-dimensional vector of all ones, \mathcal{P} denotes the desired class distribution.

The self-label assignment generation can be understood as an **optimal transportation** problem as $\min_{\mathbf{Q} \in \mathcal{Q}_1} \operatorname{Tr}(\mathbf{Q} \log(\mathbf{P}^{\mathcal{T}}))$.

Core idea of **conditional** self-labeling method to refine the self-label assignment under partial supervision. Specifically, we exploit the ground-truth in the labeled dataset and introduce another constraint:

$$\mathcal{Q}_2 := \{ \mathbf{Q} \in \mathbb{R}_+^{K \times N} | \mathbf{q}^{(i)} = \mathbf{y}_{gt}^{(i)}, i = 1, \dots, N' \},$$
(1)

Combining these two constraints, we generate the conditional self-label assignment by optimizing,

$$\min_{\mathbf{Q}\in\mathcal{Q}_1\cap\mathcal{Q}_2} \operatorname{Tr}(\mathbf{Q}\log(\mathbf{P}^T)) + \epsilon E(\mathbf{Q}),$$
(2)

where $E(\cdot)$ is the entropy function, ϵ is a hyperparameter controlling the smoothness of **Q**. We denote the optimal solution of (2) as $\tilde{\mathbf{Q}}$.

Conditional Self-labeling

Theoretical Analysis

Definition 1

Expectation of chi-square statistics (ECS) for $\hat{\mu}$ are defined as the population deviation between the estimator of unlabeled class distribution $\hat{\mu}$ and its true distribution \mathcal{P}^{u} :

$$\mathbb{ECS}(\hat{\boldsymbol{\mu}}) := \mathbb{E}[\chi^2(\boldsymbol{A})] = \mathbb{E}\left[\sum_{i=1}^{K} \frac{(A_i - \mathbb{E}_{\boldsymbol{\mathcal{P}}}[N_i^u])^2}{\mathbb{E}_{\boldsymbol{\mathcal{P}}}[N_i^u]}\right],$$
(3)

where **A** are estimators based on N'_1, N'_2, \dots, N'_K , thus are still random variables.

Theorem 1

Consider two estimators for class distribution on unlabeled data, $\hat{\mu}_{\rm uncon}$ and $\hat{\mu}_{\rm con}$, we have $\hat{\mu}_{\rm uncon}$ is a biased estimator and $\hat{\mu}_{\rm con}$ is an unbiased estimator.

Conditional Self-labeling

Theoretical Analysis

Theorem 2

Suppose $r_i := \frac{N' \cdot p_i^i}{N}$ denote the ratio of label samples of the *i*-th class to the whole samples, $r := \sum_i r_i$ denotes the ratio of labeled samples to the whole samples. For unlabeled sample size N^u , if $\sqrt{N^u} > \frac{1}{\max(|r_i - r \cdot p_i^u|, r \cdot p_j)}$ for $\forall i \in C_I, \forall j \in C_u$, then $\operatorname{ECS}(\hat{\mu}_{\operatorname{con}}) \leq \operatorname{ECS}(\hat{\mu}_{\operatorname{uncon}}).$

Conclusion

Following rigorous statistical analysis, the generated label assignments from conditional self-labeling method are closer to the true class distribution in the following scenarios:

- Estimation based on large unlabeled sample size (N^u) ;
- The difference between prior distribution \mathcal{P} and class distribution of unlabeled data \mathcal{P}^u is not negligible.

Open-world Hierarchical Thresholding

Confidence Objective

Unlabeled data are typically used to enhance model performance through consistency regularization [8]:

$$\sum_{i=1}^{N} \mathbb{I}(\max(\mathbf{p}^{(i)}) \geq \tau) H(\hat{\mathbf{p}}^{(i)}, \mathbf{p}^{(i)}),$$

where τ is a scalar hyperparameter denoting the threshold above which we retain a one-hot pseudo-label $\hat{\mathbf{p}}^{(i)}$.

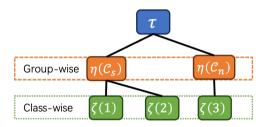


Figure 2: An illustration of the hierarchical thresholding scheme, which involves first estimating the overall learning conditions of two groups and then hierarchically modulating the thresholds in a class-specific manner.

Hierarchical thresholding scheme

Group-wise learning condition for a set of classes $C_i = C_s$ or C_n as

$$\eta(\mathcal{C}_i) = \frac{1}{N_{\mathcal{C}_i}} \sum_{i=1}^{N} \max(\mathbf{p}^{(i)}) \mathbb{I}(\hat{p}^{(i)} \in \mathcal{C}_i), \ \mathcal{C}_i = \mathcal{C}_s, \mathcal{C}_n,$$
(4)

where $N_{C_i} = \sum \mathbb{I}(\hat{p}^{(i)} \in C_i)$ denotes the number of samples whose predictive labels $\hat{p}^{(i)}$ belong to the group C_i . Similarly, the **class-wise** learning conditions can be defined as

$$\zeta_c = \frac{1}{N_c} \sum_{i=1}^N \max(\mathbf{p}^{(i)}) \mathbb{I}(\hat{\boldsymbol{p}}^{(i)} = c), \ c = 1, \dots, K,$$
(5)

where $N_c = \sum \mathbb{I}(\hat{p}^{(i)} = c)$ denotes the number of samples whose predicted labels belong to the *c*-th class.

We merge these two learning conditions and obtain the open-world hierarchical threshold as $\tau(c) = \frac{\zeta_c}{\max_{c \in C_i} \zeta_c} \cdot \eta(C_i)$. And the confidence objective has the form of

$$\mathcal{L}_{conf} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(\max(\mathbf{p}^{(i)}) > \tau(\hat{p}^{(i)})) \cdot H(\hat{\mathbf{p}}^{(i)}, g_{\theta}(\mathcal{A}(\mathbf{x}^{(i)}))).$$
(6)

Together with the supervised objective $\mathcal{L}_{sup} = \frac{1}{N'} \sum_{i=1}^{N'} H(\mathbf{y}_{gt}^{(i)}, \mathbf{p}^{(i)})$ and clustering objective $\mathcal{L}_{cls} = \frac{1}{N} \sum_{i=1}^{N} H(\tilde{\mathbf{q}}^{(i)}, \mathbf{p}^{(i)})$, the overall objective for OwMatch is defined as:

$$\mathcal{L} = \mathcal{L}_{sup} + \mathcal{L}_{cls} + \mathcal{L}_{conf}.$$
(7)

Background	Methodology	Experiments	References
0000	00000000	●000	0

Outlines

Methodology

- Conditional Self-labeling
- Open-world Hierarchical Thresholding

3 Experiments

4 References

Background 0000	Methodology 00000000	Experiments 000	References O
Main Result			

Table 1: Average accuracy on the CIFAR-10/100 and ImageNet100 with 50% novel classes and 50% labeled data within seen classes.

Method	CIFAR-10				CIFAR-100)	ImageNet100			
	Seen	Novel	All	Seen	Novel	All	Seen	Novel	All	
FixMatch [8]	71.5	50.4	49.5	39.6	23.5	20.3	65.8	36.7	34.9	
DS ³ L [9]	77.6	45.3	40.2	55.1	23.7	24.0	71.2	32.5	30.8	
CGDL [10]	72.3	44.6	39.7	49.3	22.5	23.5	67.3	33.8	31.9	
DTC [11]	53.9	39.5	38.3	31.3	22.9	18.3	25.6	20.8	21.3	
RankStats [12]	86.6	81.0	82.9	36.4	28.4	23.1	47.3	28.7	40.3	
SimCLR [13]	58.3	63.4	51.7	28.6	21.1	22.3	39.5	35.7	36.9	
UNO [14]	91.6	69.3	80.5	68.3	36.5	51.5	-	-	-	
ORCA [15]	88.2	90.4	89.7	66.9	43.0	48.1	89.1	72.1	77.8	
NACH [1]	89.5	92.2	91.3	68.7	47.0	52.1	91.0	75.5	79.6	
OpenLDN [2]	95.7	95.1	95.4	73.5	46.8	60.1	89.6	68.6	79.1	
TRSSL [7]	96.8	92.8	94.8	80.0	49.3	64.7	-	-	-	
OpenCon [16]	89.3	91.1	90.4	69.1	47.8	52.7	90.6	80.8	83.8	
OwMatch	93.0	95.9	94.4	74.5	55.9	65.1	91.7	72.0	81.8	
OwMatch+	96.5	97.1	96.8	80.1	63.9	71.9	91.5	79.6	85.5	

Experiments 00●0

Ablation on Components

Table 2: Ablation study on datasets with both novel class ratio and label ratio of 50%. Here, **ConSL** refers to conditional self-labeling, **PLCR** refers to consistency regularization, and **OwAT** refers to an open-world hierarchical thresholding scheme.

C	omponen	its	CIFAR-10		CIFAR-100			Tiny-ImageNet			
ConSL	PLCR	OwAT	Seen	Novel	All	Seen	Novel	All	Seen	Novel	All
×	×	×	96.5	90.2	93.3	78.8	56.7	67.7	66.5	38.1	52.0
\checkmark	×	×	95.4	96.4	95.9	79.2	58.5	68.7	66.0	39.4	52.4
\checkmark	\checkmark	×	96.3	97.3	96.8	80.1	59.4	69.6	68.6	42.0	54.2
×	\checkmark	\checkmark	97.1	90.4	93.8	80.7	59.7	69.9	69.7	41.4	54.6
\checkmark	\checkmark	\checkmark	96.5	97.1	96.8	80.1	63.9	71.9	68.8	42.4	55.0

Experiments 000●

Practical and Robust Settings

Table 3: Performance on benchmarks with different imbalance factors (IF) with/without prior class distribution.

Dataset	Prior	Uniform (IF=1)			IF=10			IF=20		
		Seen	Novel	All	Seen	Novel	All	Seen	Novel	All
CIFAR10	w/	96.5	97.1	96.8	93.7	72.1	82.5	92.9	70.1	80.9
	w/o	96.9	90.9	93.9	95.8	66.5	80.3	95.3	64.2	78.8
CIFAR100	w/	80.1	63.9	71.9	76.8	42.0	57.3	76.1	35.2	51.9
	w/o	82.5	57.9	69.2	74.6	39.7	54.1	73.9	33.9	49.2
Tiny-ImageNet	w/	68.8	42.4	55.0	61.7	25.1	41.6	62.4	21.7	38.3
	w/o	69.6	40.6	54.8	61.0	24.9	40.1	61.3	20.3	36.9

Outlines

Methodology

- Conditional Self-labeling
- Open-world Hierarchical Thresholding

3 Experiments

4 References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

(ロ)、(型)、(E)、(E)、(E)、(O)への

- Lan-Zhe Guo, Yi-Ge Zhang, Zhi-Fan Wu, Jie-Jing Shao, and Yu-Feng Li. Robust semi-supervised learning when not all classes have labels. Advances in Neural Information Processing Systems, 35:3305–3317, 2022.
- [2] Mamshad Nayeem Rizve, Navid Kardan, Salman Khan, Fahad Shahbaz Khan, and Mubarak Shah.

OpenLDN: learning to discover novel classes for open-world semi-supervised learning. In *European Conference on Computer Vision (ECCV)*, pages 382–401. Springer, 2022.

- [3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
 A simple framework for contrastive learning of visual representations.
 In International conference on machine learning, pages 1597–1607. PMLR, 2020.
- [4] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.

Supervised contrastive learning.

Advances in neural information processing systems, 33:18661–18673, 2020.

[5] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7492–7501, 2022.

[6] Xin Wen, Bingchen Zhao, and Xiaojuan Qi.

Parametric classification for generalized category discovery: A baseline study. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 16590–16600, 2023.

 [7] Mamshad Nayeem Rizve, Navid Kardan, and Mubarak Shah. Towards realistic semi-supervised learning.
 In Supervised Computing Vision (SCCCV) process 427.

In European Conference on Computer Vision (ECCV), pages 437–455. Springer, 2022.

 [8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li.
 Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in neural information processing systems, 33:596–608, 2020.

[9] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou.
 Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data.
 In Proceedings of the 37th International Conference on Machine Learning, pages 3897–3906.
 PMLR, November 2020.

[10] Xin Sun, Zhenning Yang, Chi Zhang, Keck-Voon Ling, and Guohao Peng.

Conditional gaussian distribution learning for open set recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13480–13489, 2020.

[11] Kai Han, Andrea Vedaldi, and Andrew Zisserman.

Learning to discover novel visual categories via deep transfer clustering.

In *Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR)*, pages 8401–8409, 2019.

[12] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman. Automatically discovering and learning new visual categories with ranking statistics. In International Conference on Learning Representations (ICLR), 2020.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
 A simple framework for contrastive learning of visual representations.
 In International Conference on Machine Learning (ICML, pages 1597–1607. PMLR, 2020.

[14] Enrico Fini, Enver Sangineto, Stéphane Lathuiliere, Zhun Zhong, Moin Nabi, and Elisa Ricci.
 A unified objective for novel class discovery.

In Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR, pages 9284–9292, 2021.

[15] Kaidi Cao, Maria Brbic, and Jure Leskovec. Open-world semi-supervised learning. arXiv preprint arXiv:2102.03526, 2021.

[16] Yiyou Sun and Yixuan Li.

OpenCon: open-world contrastive learning.

Transactions on Machine Learning Research, 2023.

[17] Lilian Weng.

Learning with not enough data part 1: Semi-supervised learning. *lilianweng.github.io*, Dec 2021.

[18] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi.

Self-labelling via simultaneous clustering and representation learning. In International Conference on Learning Representations (ICLR), 2020.

[19] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling.

Advances in Neural Information Processing Systems (NeurIPS), 34:18408–18419, 2021.

- [20] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin.
 Dash: Semi-supervised learning with dynamic thresholding.
 In International Conference on Machine Learning, pages 11525–11536. PMLR, 2021.
- [21] Harold W Kuhn.

The hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2):83-97, 1955.

[22] Kuniaki Saito, Donghyun Kim, and Kate Saenko.

Openmatch: Open-set consistency regularization for semi-supervised learning with outliers. *arXiv preprint arXiv:2105.14148*, 2021.

[23] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-supervised learning for unseen-class unlabeled data. In International Conference on Machine Learning, pages 3897–3906. PMLR, 2020.

[24] Yue Fan, Dengxin Dai, Anna Kukleva, and Bernt Schiele.

(ロ)、(型)、(E)、(E)、(E)、(O)への

CossI: Co-learning of representation and classifier for imbalanced semi-supervised learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 14574–14584, 2022.

[25] Zhengfeng Lai, Chao Wang, Sen-ching Cheung, and Chen-Nee Chuah. Sar: Self-adaptive refinement on pseudo labels for multiclass-imbalanced semi-supervised learning.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 4091–4100, June 2022.

[26] Hyuck Lee, Seungjae Shin, and Heeyoung Kim.

Abc: Auxiliary balanced classifier for class-imbalanced semi-supervised learning. *Advances in Neural Information Processing Systems*, 34:7082–7094, 2021.