

FFAM: Feature Factorization Activation Map for Explanation of 3D Detectors

Shuai Liu, Boyang Li, Zhiyu Fang, Mingyue Cui and Kai Huang* School of Computer Science and Engineering, Sun Yat-sen University Github: <u>https://github.com/Say2L/FFAM</u>

Background

LiDAR-based 3D object detection has made impressive progress recently, yet most existing models are black-box, lacking interpretability.

Previous explanation approaches primarily focus on analyzing image-based models and are not readily applicable to LiDAR-based 3D detectors.

Introduction

Challenges

□ Point clouds are inherently three dimensional.

□ Explanation for specific 3D object in point cloud.

□ Point clouds are sparsely distributed in 3D space.

Introduction

 \square

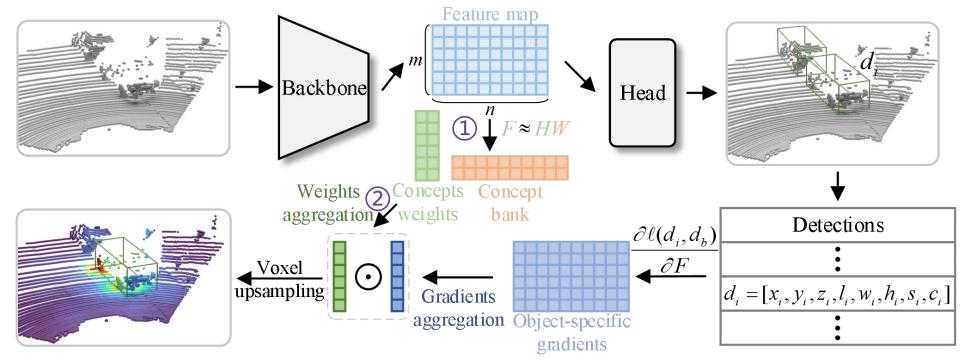
Contribution

We propose a feature factorization activation map (FFAM)
method to obtain high-quality visual explanations for 3D detectors.

- We introduce non-negative matrix factorization (NMF) in explaining point cloud detectors.
- We utilize feature gradients of an object-specific loss to refine the global concept activation map.
- A voxel upsampling strategy is proposed to upsample sparse voxels.

Proposed Method

Framework of FFAM



• Calculate the global activation map *V*:

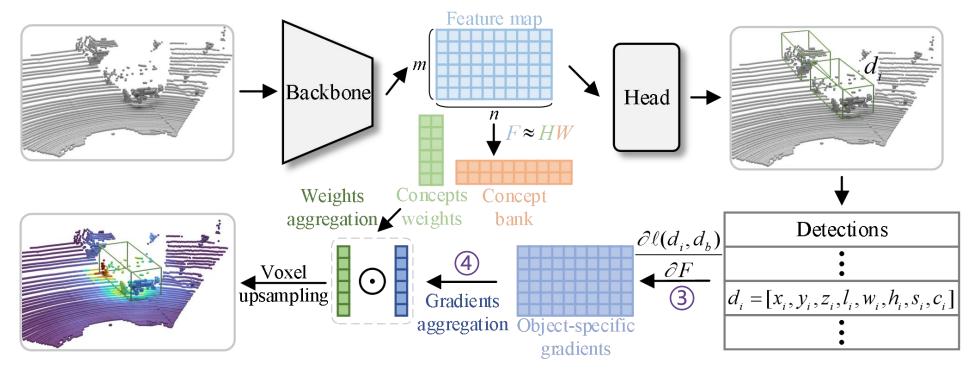
(1)
$$\operatorname{NMF}(A) = \operatorname{argmin}_{\hat{A}} \left\| A - \hat{A} \right\|_{F}^{2}$$

s.t. $\hat{A} = HW, \forall ij, H_{ij}, W_{ij} \ge 0$

$$V = \sum_{j=1}^{r} H_{j}$$

Proposed Method

Framework of FFAM



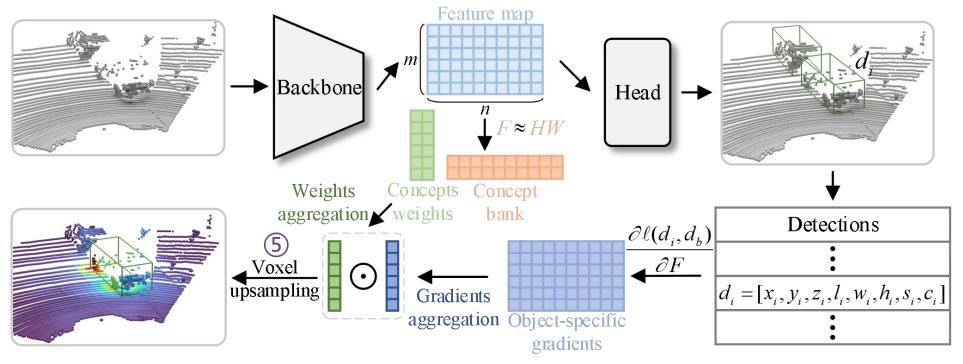
• Obtain the object-specific activation map *M*:

3
$$G = \frac{\partial \ell}{\partial F}$$
 4 $\omega = \sum_{k=1}^{d} |G_{\cdot k}|$
 $M = \Phi(\omega) \odot \Phi(V)$

6

Proposed Method

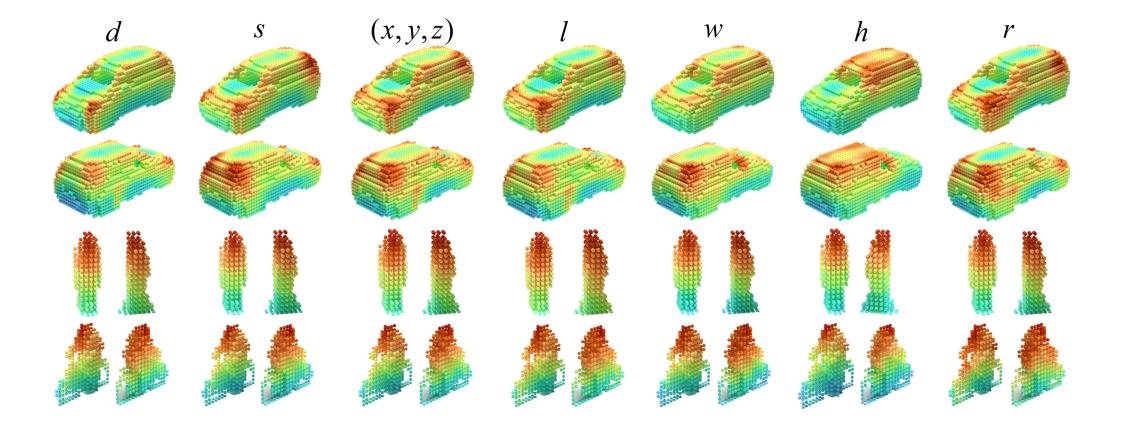
Framework of FFAM



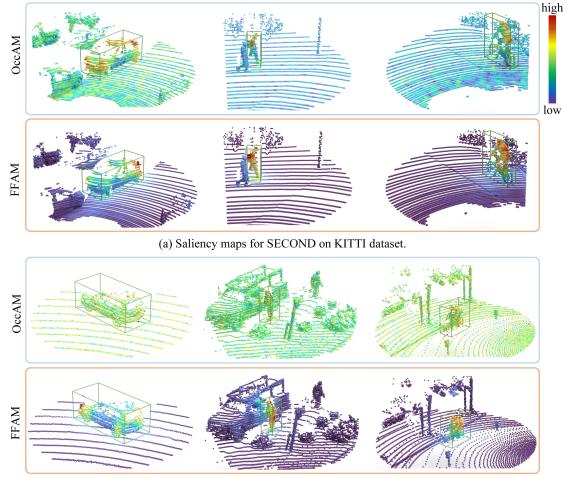
• Voxel Upsampling:

(5)
$$s_p = \sum_{v \in \aleph} \frac{\Psi(d(v_p, v))}{\sum_{v \in \aleph} \Psi(d(v_p, v))} M_v$$

Qualitative Results: Average saliency maps



Qualitative Results: Comparison of Saliency maps



(b) Saliency maps for CenterPoint on Waymo Open dataset.

Quantitative Results

Method	Deletion ↓					Insertion ↑				
	All	Car	Ped.	Cyc.	-	All	Car	Ped.	Cyc.	
Grad-CAM	0.335	0.373	0.137	0.129		0.797	0.821	0.688	0.725	
ODAM	0.134	0.138	0.122	0.098		0.885	0.902	0.785	0.828	
OccAM	0.286	0.311	0.146	0.167		0.863	0.880	0.761	0.790	
FFAM (Ours)	0.071	0.068	0.098	0.078		0.907	0.923	0.806	0.854	

Table 1: AUC for Deletion and Insertion curves. The results of different categories are reported.

Method	PG ↑				 enPG ↑				
	All	Car	Ped.	Cyc.	All	Car	Ped.	Cyc.	
Grad-CAM	0.093	0.080	0.166	0.163	0.021	0.022	0.014	0.011	
ODAM	0.901	0.895	0.939	0.926	0.633	0.639	0.577	0.654	
OccAM	0.946	0.957	0.898	0.860	0.023	0.024	0.019	0.013	
FFAM (Ours)	0.991	0.989	0.999	0.998	0.664	0.671	0.591	0.719	

Table 2: Comparison of Pointing game (PG) and energy-based Pointing game (enPG) metrics.