

EnsIR: An Ensemble Algorithm for Image Restoration via Gaussian Mixture Models

Shangquan Sun^{1,2}, Wenqi Ren³, Zikun Liu⁴, Hyunhee Park⁴, Rui Wang^{1,2}, Xiaochun Cao³

¹CAS, China ²UCAS, China ³Shenzhen Campus of SYSU, China ⁴Samsung

NeurIPS 2024

2024.11.2

Motivation

Problem Formulation

• Ensemble for Image Restoration

$$
\tilde{\mathbf{Y}}_n = \boldsymbol{\beta}_n^\top \begin{bmatrix} \tilde{\mathbf{X}}_{1,n} & \cdots & \tilde{\mathbf{X}}_{M,n} \end{bmatrix}, \forall n
$$
 (1)

• For a reference set, formulate all data with Gaussian prior

$$
\mathbf{y}_{1:N}|f_m, \mathbf{x}_{1:N} \sim \mathcal{N}\left(\mathbf{x}_{m,1:N}, \text{diag}(\mathbf{\Sigma}_{m,1},...,\mathbf{\Sigma}_{m,N})\right),\tag{2}
$$

• Partition data into bins:

$$
\mathbf{y}_{r,1:N} = \mathbf{R}_r \cdot \mathbf{y}_{1:N}, \qquad \mathbf{x}_{r,m,1:N} = \mathbf{R}_r \cdot \mathbf{x}_{m,1:N}, \qquad (3)
$$

• Within each bin, Gaussian prior still holds

$$
\mathbf{y}_{r,1:N}^{(i)}|f_m, \mathbf{x}_{r,m,1:N} \stackrel{i.i.d}{\sim} \mathcal{N}(\mu_{r,m,1:N}, \sigma_{r,m,1:N}), \ \forall i \in [1, ..., N_r], \tag{4}
$$

• Then ensemble problem is split for estimating weights within. bins

$$
\mathbf{y}_{r,1:N}^{(i)} = \mathbb{E}_{z} \left[\mathbf{x}_{r,m,1:N}^{(i)} \right] = \sum_{m=1}^{M} \alpha_{r,m} \cdot \mathbf{x}_{r,m,1:N}^{(i)}; \ P(\mathbf{y}_{r,1:N}^{(i)}) = \sum_{m=1}^{M} \alpha_{r,m} P\left(\mathbf{y}_{r,1:N}^{(i)} \middle| z = m\right), \tag{5}
$$

$$
\left\{\alpha_{r,m}\right\}_{r,m} \in \arg \max P(\mathbf{y}_{1:N}). \tag{6}
$$

Gaussian Mixture Models and EM Algorithm

• Gaussian Mixture Models:

$$
\alpha_{r,m} \in \arg\max_{\alpha_{r,m}} P(\mathbf{y}_{r,1:N}) = \arg\max_{\alpha_{r,m}} \prod_{i=1}^{N_r} P(\mathbf{y}_{r,1:N}^{(i)}).
$$
 (7)

• Estimate ensemble weights by maximizing the log likelihood as

$$
\log P(\mathbf{y}_{r,1:N}) = \log \prod_{i=1}^{N_r} \sum_{m=1}^{M} \alpha_{r,m} \phi \left(\mathbf{y}_{r,1:N}^{(i)}; \mu_{r,m,1:N}, \sigma_{r,m,1:N} \right)
$$

=
$$
\sum_{i=1}^{N_r} \log \sum_{m=1}^{M} \alpha_{r,m} \phi \left(\mathbf{y}_{r,1:N}^{(i)}; \mu_{r,m,1:N}, \sigma_{r,m,1:N} \right)
$$

$$
\geq \sum_{m=1}^{M} P \left(z = m \Big| \mathbf{y}_{r,1:N}^{(i)} \right) \log \frac{\alpha_{r,m} \phi(\mathbf{y}_{r,1:N}^{(i)}; \mu_{r,m,1:N}, \sigma_{r,m,1:N})}{P \left(z = m \Big| \mathbf{y}_{r,1:N}^{(i)} \right)},
$$
(8)

Gaussian Mixture Models and **EM Algorithm**

• **E**xpectation step:

$$
\gamma_{r,m,1:N} \leftarrow P\left(z = m \middle| \mathbf{y}_{r,1:N}^{(i)}\right) = \frac{\alpha_{r,m} \phi\left(\mathbf{y}_{r,1:N}^{(i)}; \mu_{r,m,1:N}, \sigma_{r,m,1:N}\right)}{\sum_{m=1}^{M} \alpha_{r,m} \phi\left(\mathbf{y}_{r,1:N}^{(i)}; \mu_{r,m,1:N}, \sigma_{r,m,1:N}\right)}.
$$
(9)

• **M**aximization step:

$$
\alpha_{r,m} \leftarrow \frac{1}{N_r} \sum_{i=1}^{N_r} \gamma_{r,m,1:N}
$$
\n(10)

$$
\sigma_{r,m,1:N} \leftarrow \frac{\sum_{i=1}^{N_r} \gamma_{r,m,1:N} \left(\mathbf{y}_{r,m,1:N}^{(i)} - \mu_{r,m,1:N}\right)^2}{\sum_{n=1}^{N_r} \gamma_{r,m,1:N}}.
$$
\n(11)

• Priors of Mean and Variance:

$$
\mu_{r,m,1:N} \leftarrow \frac{1}{N_r} \sum_{i=1}^{N_r} \mathbf{x}_{r,m,1:N}^{(i)}
$$
(12)

$$
\sigma_{r,m,1:N} \leftarrow \frac{1}{N_r} \left\| \mathbf{x}_{r,m,1:N} - \mu_{r,m,1:N} \right\|_2.
$$
 (13)

Look-up Table for inference and Overall Algorithm

• LUT to save the weights for inference

 $\tilde{\mathbf{X}}_{r,m,n} = \mathbf{R}_r \cdot \tilde{\mathbf{X}}_{m,n}$, where $\mathbf{R}_r = \prod_{r=1}^{n} \mathbf{I}_{B_m}(\tilde{\mathbf{X}}_{m,n}).$

$$
\mathbf{\tilde{Y}}_n = \sum_{r=1}^{T^M} \mathbf{\tilde{Y}}_{r,n} = \sum_{r=1}^{T^M} \sum_{m=1}^M \alpha_{r,m} \mathbf{\tilde{X}}_{r,m,n}.
$$

Algorithm 2: MPEM: EM algorithm with known Mean Prior **Input:** $y_{r,1:N}, x_{r,1,1:N},...,x_{r,M,1:N}$ **Output:** $(\alpha_{r,1}, ..., \alpha_{r,M})$ $1 \, N_r \leftarrow$ number of nonzero pixels in $y_{r,1:N}$; 2 Initialize $\mu_{r,m,1:N}$ by Eq. 12; 3 Initialize $\sigma_{r,m,1:N}$ by Eq. 13; 4 while not converge do for $i \in [1, N_r]$ do $5\overline{5}$ for $m \in [1, M]$ do 6 Update $\gamma_{r,m,1:N}$ by Eq. 9; $\overline{7}$ end 8 $\overline{9}$ end for $m \in [1, M]$ do 10 Update $\alpha_{r,m}$ by Eq. 10; 11 Update $\sigma_{r,m,1:N}$ by Eq. 11; 12 13 end 14 end

 (14)

Algorithm 1: EnsIR: an ensemble algorithm for image restoration **Input:** A small reference dataset $\{x_n, y_n\}_{n=1}^N$ for ensemble weight estimation, test set $\{\hat{\mathbf{X}}_n\}$, M pre-trained models $f_1, ..., f_M$, bin width b, Empty lookup table LUT (15) **Output:** Ensemble result $\{Y_n\}$ **Estimation Stage:** 1 Obtain restoration predictions by $\mathbf{x}_{m,n} = \text{flatten}(f_m(\mathbf{X}_n)), \forall m \in \{1, ..., M\}$; 2 Append restoration predictions and ground-truths into $y_{1:N}$ and $x_{m,1:N}$ based on Eq. 2; 3 Define bin set space $\mathbb{B} = \{ [0, b), [b, 2b), ..., [(T - 1)b, 255] \}$; 4 for each bin set $(B_1,...B_M) \in \mathbb{B}^M$ do Compute the partition map $\mathbf{R}_r = \prod_{m=1}^M \mathbf{I}_{B_m}(f_m(\mathbf{x}_n))$;
Partition images and obtain range-wise patches $(\mathbf{y}_{r,1:N}, \mathbf{x}_{r,1,1:N}, ..., \mathbf{x}_{r,M,1:N})$ by Eq. 3; $\overline{5}$ 6 $(\alpha_{r,1}, ..., \alpha_{r,M}) \leftarrow \textbf{MPEM}(\mathbf{y}_{r,1:N}, \mathbf{x}_{r,1,1:N}, ..., \mathbf{x}_{r,M,1:N})$;
Store LUT $[(B_1, . . . B_M)] \leftarrow (\alpha_{r,1}, ..., \alpha_{r,M})$; $\overline{7}$ $\bf{8}$ ₉ end **Inference Stage:** 10 for each test data $\hat{\mathbf{X}}_n$ do for each bin set $(B_1,...B_M) \in \mathbb{B}^M$ do 11 Retrieve $(\alpha_{r,1},...,\alpha_{r,M}) \leftarrow \text{LUT}[(B_1,...B_M)]$; 12 Partition input as $\mathbf{\tilde{X}}_{r,m,n} \leftarrow \mathbf{R}_r \cdot f_m(\mathbf{\hat{X}}_n)$, where $\mathbf{R}_r = \prod_{m=1}^M \mathbf{I}_{B_m}(f_m(\mathbf{\hat{X}}_n))$; 13 $\mathbf{\tilde{Y}}_{r,n} \leftarrow \sum_{m=1}^{M} \alpha_{r,m} \mathbf{\tilde{X}}_{r,m,n}$; /* Inner summation of Eq. 15 */ 14 end 15 $\mathbf{\tilde{Y}}_n \leftarrow \sum_{r=1}^{T^M} \mathbf{\tilde{Y}}_{r,n}$ 16 /* Outer summation of Eq. 15 $*/$ 17 end

A Simple Case with bin width=64 0 0 1 Pixels Bin set 1: $[0, 64)$ for ${\bf x}_1$ $[0, 64)$ for x_2 α_1

Result 2: Ablation Studies

Table 1: Ablation study of bin width b on Rain100H [74] with maximum step number 1000. "Runtime" is the average runtime [s].

Table 2: Ablation study of maximum step number in the EM algorithm on Rain100H $[74]$ with $b = 32$. "Time" is the time of EM algorithm [s].

	16.	32.	64	96.	128	#step	10.	100	500	1000 10000
Runtime 1.2460 0.1709 0.0265 0.0132 0.0059 SSIM			PSNR 31.745 31.739 31.720 31.713 31.725 0.9093 0.9095 0.9094 0.9093 0.9093						Time 12.108 28.516 30.409 30.518 30.524 PSNR 31.734 31.738 31.738 31.739 31.739 SSIM 0.9093 0.9094 0.9095 0.9095 0.9095	

Table 6: The average runtime per image in seconds of the ensemble methods on Rain100H [74].

	Method Bagging [6] AdaBoost [22] RForest [7] GBDT [23] HGBT [34] Average ZZPM [92] Ours					
Runtime 1.0070	1.1827	9.8598	1.2781	0.1773	0.0003 0.0021	0.1709

Quantitative Comparison: Super-Resolution

Quantitative Comparison: Deblurring

(b) GT & LQ (c) Restormer (d) HGBT [34] (e) Average (f) ZZPM [92] (g) Ours PSNR/SSIM 29.980/0.9377 32.110/0.9481 32.177/0.9479 32.170/0.9475 32.584/0.9486 (a) Image

Quantitative Comparison: Deraining

Visualization

• Weight Map

Figure 4: A sample of weight visualizations on HIDE [59]. Base models are DGUNet [49], MPR-Net [79], and Restormer [78]. The first column shows the base model predictions and ground-truth. The second column shows the ensemble weights and result of the averaging strategy. The third column shows the ensemble weights and result of ZZPM [89]. The last column shows the ensemble weights and result of our method.

Figure 5: A sampled group of feature visualizations on HIDE [59]. "Base" denotes the features of three base models, i.e., DGUNet [49], MPRNet [79], and Restormer [78].

Visualization

• Pixel Distribution within bin set

Figure 6: A group of distribution visualizations on HIDE [59]. The bin sets of the first row is $(B_1 = [0, 32), B_2 = [0, 32), B_3 = [32, 64)$. The bin sets of the second row is $(B_1 = [64, 96), B_2 = [32, 64), B_3 = [96, 128)$. The bin sets of the third row is $(B_1 = [64, 96), B_2 = [128, 160), B_3 =$ [128, 160]). The bin sets of the last row is $(B_1 = [64, 96), B_2 = [64, 96), B_3 = [64, 96)]$. Base models are DGUNet [49], MPRNet [79], and Restormer [78].

Thank You