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Bayesian Deep Learning

Bayesian Approach: Instead of point estimates, BDL estimates the 
distribution of the model parameters with prior information

Uncertainty Estimation: Improves understanding of prediction 
uncertainty

Applications: Transfer learning, fairness, active learning, reinforcement 
learning, robotics
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Particle Variational Inference (ParVI)
Basic: MC Dropout, Stochastic Gradient Langevin Dynamics (SGLD), and 
Ensemble methods.

Stein Variational Gradient Descent (SVGD):  iterative gradient-based 
variational inference algorithm on a finite set of particles M.

Kernel Selection: Overwhelmingly popular choice is Radial Basis 
Function (RBF) with median heuristic.

⮚ Background

RepulsiveDriving

https://www.cs.toronto.edu/~duvenaud/cookbook/index.html



Issues with RBF and Ensemble Diversity
Posterior Representation: Particles that are more diverse better capture the 
posterior. Supported by methods like SVGD.

Challenge: what should we consider diverse and how should we better measure it?

RBF: Works with small networks, but fails with larger ones (D’Angelo et al.)

Current limitations:

● Euclidean based kernels - using L1,L2 - lack scale and permutation invariance
● Curse of dimensionality in high-dimensional parameter spaces
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Goal: construct a differentiable kernel that 
is invariant to isotropic scaling and 
permutations

Solution: Centered Kernel Alignment

Centered Kernel Alignment

⮚ Methodology

CKA between two models

Ensemble metric: Pairwise CKA



Alternative perspective of pairwise CKA: projection of feature gram 
matrices vectorized and projected onto unit hypersphere and minimization 
of pairwise cosine similarity.

Potential deficiency: small gradients when model CKAs are similar as 
gradient of cos is -sin 

Hyperspherical Energy

⮚ Methodology
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Architecture

⮚ Methodology

Synthetic OOD

MNIST TinyImgNet

Noise: Perlin, Simplex, Gaussian, 
random shapes

ID2OOD: augmentations such as blur, 
elastic transformation, cutout, etc



Synthetic four class classification

⮚ Results



Dirty-MNIST and FashionMNIST
⮚ Results

Inlier Outlier

Synthetic OOD



Dirty MNIST Ensemble CKA Plots

⮚ Results

Deep Ensemble SVGD + RBF Deep Ensemble + HE-CKA

Diagonals
Deep Ensemble

SVGD + RBF

Deep Ensemble + HE-CKA
Used unbiased CKA estimator for plotting. Each square represents the 

mean pairwise CKA in the ensemble for that layer



CIFAR10 / TinyImageNet

⮚ Results



CKA for Bayesian Deep Learning

⮚ Conclusion

CKA: Provides a more intuitive kernel to measure model similarity compared to RBF

HE: Realized pairwise CKA can be reformulated as a hyperspherical energy 
optimization problem.

Synthetic Outlier: Increase feature diversity on obvious outlier examples and provide 
negative signals for likelihood. Significant improvement in outlier detection without 
sacrificing inlier performance.

Limitations:

● Larger memory requirements (feature gram matrices/gradients)
● Requires tuning of multiple hyperparameters for good performance (ex: layer 

weighting)
● Hyperparameters are sensitive to dataset and particle number
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Code publicly available at
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https://github.com/Deep-Machine-Vision/he-cka-ensembles


