

Boosting the Transferability of Adversarial Attack on Vision Transformer with Adaptive Token Tuning

Di Ming, Peng Ren, Yunlong Wang, Xin Feng* School of Computer Science and Engineering, Chongqing University of Technology Chongqing, China

diming@cqut.edu.cn, misterr_2019@163.com, ylwang@cqut.edu.cn, xfeng@cqut.edu.cn

Introduction

> Background

✤ Adversarial Example

- □ Crafted by adding tiny perturbations deliberately to benign sample.
- □ Aim at disturbing the prediction of deep neural network models, e.g., image classification.

* Adversarial Attack on Vision Transformers (ViTs)

□ ViTs demonstrate excellent performance in a range of of computer vision tasks.

□ Similar to CNNs, ViTs remain vulnerable to adversarial attacks, which can be described as follows:

Solution Section Construction Constructio

□ Goal: address the limitations of existing works, e.g., the overly aggressive regularization of token gradien → ATT-Attack: achieve more transferable and efficient attacks across various target models in black-box setting.

Adaptive Token Tuning (ATT) Attack

* Three Optimization Strategies for Improving both Transferability and Efficiency of ViT Attacks.

- □ Adaptive Gradient Re-scaling Strategy: reduce the overall variance of token gradients.
- □ Self-paced Patch Out Strategy: enhance the diversity of input tokens.
- □ Hybrid Token Gradient Truncation Strategy: weaken the effectiveness of attention mechanism.

> Adaptive Variance Reduced Token Gradient

- ✤ Variance Reduction in a Single ViT Layer
 - □ The gradient of the *i*-th token for a given *m*-module of layer l can be expressed as $g_i^{(l,m)}$.

 \Box The maximum gradient is defined as $\arg \max_{i \in \{1, \dots, n\}} g_i^{(l,m)}$.

 $\hfill \Box$ Mildly re-scale token gradient via gradient penalty factor γ :

 $m = \text{QKV or MLP} \implies \boldsymbol{g}_i^{(l,m)} = \gamma \cdot \boldsymbol{g}_i^{(l,m)} \qquad m = \text{Attention} \implies \boldsymbol{g}_i^{(l,m)} = \gamma \cdot \boldsymbol{g}_i^{(l,m)}, i \in \mathcal{S}$

where S represents the set of extreme token gradients located in the same row or column as the largest token gradient.

* Adaptive Variance Reduction Throughout ViT Layers

□ Smooth the variance of token gradients $\Phi_t^{(l,m)} = \text{Var}(g^{(l,m)})$ between consecutive ViT layers by defining an adaptive gradient updating strategy as:

$$\boldsymbol{g}_{i,t}^{(l,m)} = \boldsymbol{g}_{i,t}^{(l,m)} \cdot \left(\gamma + \lambda \left(1 - \sqrt{\boldsymbol{\Phi}_t^{(l,m)} / \boldsymbol{\Phi}_t^{(l+1,m)}}\right)\right)$$

where λ is the adaptive factor balancing the relative importance between the gradient penalty factor and the ratio f gradient variances.

Self-Paced Patch Out under Semantic Guidance

- * Generating Semantic Guided Sparse Mask
 - □ Based on Grad-CAM, we construct the feature importance matrix from an intermediate ViT layer *l* as $W = \sum_{i=1}^{C^{(l)}} G_i^{(l)} \odot F_i^{(l)}$.
 - □ According to the partition of the input, we define the patch-level feature importance matrix as $W_p = \{W_p^1, \dots, W_p^n\}$, and measure each patch's importance by the Frobenius norm $||W_p^i||_F$.
 - \square By normalizing W_p as c_p^i and introducing α and β to control scaling and offset, the semantic guided sparse mask can be generated by:

$$\boldsymbol{w} = (\boldsymbol{q} < \alpha \cdot \boldsymbol{c} - \beta)$$

重慶理工大學

where $\boldsymbol{q} \in [0,1]^{C \times H \times W}$ is a random variable sampled from the patch-level uniform distribution $\mathcal{U}_p(0,1)$.

* Self-Paced Patch Out via Progressive Sparse Mask

□ Introducing self-paced patch out strategy to control the number of discarded patches for each iteration at a dynamic pace:

$$\boldsymbol{w}_t = \left\{ \boldsymbol{w} | \boldsymbol{w} = (\boldsymbol{q}_t < \alpha \cdot \boldsymbol{c}_t - \beta), \ \boldsymbol{q}_t \sim \mathcal{U}_p(0, 1), \ \boldsymbol{c}_t = 1 - \frac{t}{T}(1 - \boldsymbol{c}) \right\}$$
$$N_p(\boldsymbol{w}_1) < N_p(\boldsymbol{w}_2) < \dots < N_p(\boldsymbol{w}_T)$$

 \Box As the iteration t increase, c_t becomes to c gradually, and more perturbation patches are discarded to prevent overfitting.

> Weakening the Effectiveness of Attention Mechanism

Truncated Attention Layers

□ To mitigate overfitting by excessive global attention, we introduce hard truncation for deep ViT layers, where the token gradient $g_i^{(l,m)}$ is multiplied with a truncation factor τ for module m = Attention :

$$l \in \{1, \cdots, l'\} \implies \tau^{(l,m)} \neq 0$$
$$l \in \{l'+1, \cdots, L\} \implies \tau^{(l,m)} = 0$$

✤ Hybrid Token Gradient Truncation

□ To effectively balance the influence of different modules on perturbation training, we further introduce the hybrid truncation strategy as:

$$m = \text{Attention} \implies \mathcal{S}_{\tau}^{(m)} = \{\tau^{(1,m)}, \cdots, \tau^{(l',m)}, 0, \cdots, 0\}$$

$$m = \text{QKV or MLP} \implies \mathcal{S}_{\tau}^{(m)} = \{\tau^{(1,m)}, \cdots, \tau^{(l',m)}, \tau^{(l'+1,m)}, \cdots, \tau^{(L,m)}\}$$

□ By setting $\tau^{(l,\text{Attention})} < \max(\tau^{(l,\text{QKV})}, \tau^{(l,\text{MLP})})$ between ViT modules, we can continue to weaken the effectiveness of attention mechanis

Evaluating the Transferability

Threat Models:

- ViTs: 🛛 ViT-B/16 🗆 PiT-B 🖵 CaiT-S/24 🖵 Visformer-S 🖵 DeiT-B 🖵 TNT-S 🖵 LeViT-256 🖵 ConViT-B
- **CNNs:** \Box Inc-v3 \Box Inc-v4 \Box IncRes-v2 \Box Res-v2
- **Def-CNNs:** Inc-v3ens3 Inc-v3ens4 IncRes-v2adv
- Comparative Methods

Gradient-based: IMIM VMI SGM PNA TGR ATT (Ours) Input Diversity-based: PO SPPO (Ours)

Comparison with State-of-the-Art Methods

Model	Attack	ViTs	CNNs	Def-CNNs	Model	Attack	ViTs	CNNs	Def-CNNs
	MIM+PO	61.3	31.3	21.7		MIM+PO	70.3	44.0	29.3
	VMI+PO	69.1	42.8	30.9		VMI+PO	76.8	57.8	38.4
	SGM+PO	64.8	29.2	18.9		SGM+PO	85.1	49.2	29.3
ViT-B/16	PNA+PO	70.8	42.6	29.9	CaiT-S/24	PNA+PO	81.6	56.6	39.3
	TGR+PO	76.0	46.7	33.3		TGR+PO	88.8	60.5	40.5
	Ours+PO	77.1	51.7	37.1		Ours+PO	91.1	71.9	54.3
	Ours+SPPO	80.3 ↑	54.1 ↑	38.7 ↑		Ours+SPPO	92.6 ↑	75.4 ↑	58.3 ↑
Model	Attack	ViTs	CNNs	Def CNNs	Model	Attack	ViTs	CNNs	Def-CNNs
	1 Ittuen	110		DUI-UNINS	Model	Indució	VII 5	CININS	
	MIM+PO	47.3	32.5	17.5		MIM+PO	54.9	45.7	23.4
	MIM+PO VMI+PO	47.3 59.5	32.5 46.2	17.5 35.8		MIM+PO VMI+PO	54.9 64.8	45.7 56.6	23.4 32.6
	MIM+PO VMI+PO SGM+PO	47.3 59.5 70.0	32.5 46.2 45.6	17.5 35.8 21.3		MIM+PO VMI+PO SGM+PO	54.9 64.8 51.6	45.7 56.6 44.3	23.4 32.6 15.0
PiT-B	MIM+PO VMI+PO SGM+PO PNA+PO	47.3 59.5 70.0 73.1	32.5 46.2 45.6 57.8	17.5 35.8 21.3 32.7	Visformer-S	MIM+PO VMI+PO SGM+PO PNA+PO	54.9 64.8 51.6 68.8	45.7 56.6 44.3 61.8	23.4 32.6 15.0 32.3
PiT-B	MIM+PO VMI+PO SGM+PO PNA+PO TGR+PO	47.3 59.5 70.0 73.1 82.3	32.5 46.2 45.6 57.8 68.9	17.5 35.8 21.3 32.7 41.3	Visformer-S	MIM+PO VMI+PO SGM+PO PNA+PO TGR+PO	54.9 64.8 51.6 68.8 70.4	45.7 56.6 44.3 61.8 64.3	23.4 32.6 15.0 32.3 33.5
PiT-B	MIM+PO VMI+PO SGM+PO PNA+PO TGR+PO Ours+PO	47.3 59.5 70.0 73.1 82.3 84.2	32.5 46.2 45.6 57.8 68.9 75.2	17.5 35.8 21.3 32.7 41.3 48.4	Visformer-S	MIM+PO VMI+PO SGM+PO PNA+PO TGR+PO Ours+PO	54.9 64.8 51.6 68.8 70.4 70.5	45.7 56.6 44.3 61.8 64.3 79.3	23.4 32.6 15.0 32.3 33.5 44.5

> The Analysis of Attack's Effectiveness and Efficiency

Comparison of Attack Efficiency between Different Methods

♦ We calculate the average of the number of iterations that lead to the first-time misclassification by the model across the entire dataset, defined as $t_{avg} = (1/|D|) \cdot \sum_{i=1}^{|D|} t_i$.

- > Evaluating the Transferability of ViT Attack in Cross-Task Scenarios
 - Transferable ViT Attacks on Object Detection Models

Transferable ViT Attacks on Semantic Segmentation Models

